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§1 Vector spaces and linear dependence

§1.1 Vector spaces

Definition 1.1 (F -vector space)
Let F be an arbitrary field. A F -vector space is an abelian group (V,+) equipped
with a function

F × V → V ; (λ, v) 7→ λv

such that

1. λ(v1 + v2) = λv1 + λv2

2. (λ1 + λ2)v = λ1v + λ2v

3. λ(µv) = (λµ)v

4. 1v = v

Such a vector space may also be called a vector space over F .

Example 1.1
Let n ∈ N. Fn is the space of column vectors of length nwith entries in F .

v ∈ Fn, v =

x1
...
xn

 , xi ∈ F, 1 ≤ i ≤ n.

v + w =

v1
...
vn

+

w1
...
wn

 =

v1 + w1
...

vn + wn

 , λv =

λv1
...

λvn

 .
Fn is a F -vector space.

Example 1.2
Let X be a set, and define RX = {f : X → R} (set of real valued functions on X).
Then RX is an R-vector space:

• (f1 + f2)(x) = f1(x) + f2(x).

• (λf)(x) = λf(x), λ ∈ R.
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Example 1.3
DefineMn,m(F ) to be the set of n×mF -valued matrices. This is an F -vector space,
where the sum of matrices is computed elementwise.

Remark 1. The axioms of scalar multiplication imply that ∀v ∈ V, 0F · v = 0V .

§1.2 Subspaces

Definition 1.2 (Subspace)
Let V be an F -vector space. The subset U ⊆ V is a vector subspace of V , denoted
U ≤ V , if

1. 0V ∈ U

2. u1, u2 ∈ U =⇒ u1 + u2 ∈ U

3. (λ, u) ∈ F × U =⇒ λu ∈ U

Conditions (ii) and (iii) are equivalent to

∀λ1, λ2 ∈ F, ∀u1, u2 ∈ U, λ1u1 + λ2u2 ∈ U

This means that U is stable by vector addition and scalar multiplication.

Proposition 1.1
If V is an F -vector space, and U ≤ V , then U is an F -vector space.

Example 1.4
Let V = RR be the space of functions R → R. The set C(R) of continuous real
functions is a subspace of V . The set P(R) of real polynomials is a subspace of C(R)
so P(R) ≤ V .

Example 1.5
Consider the subset ofR3 such that x1+x2+x3 = t for some real t. This is a subspace
for t = 0 only, since no other t values yields the origin as a member of the subset.

Proposition 1.2 (Intersection of two subspaces is a subspace)
Let V be an F -vector space. Let U,W ≤ V . Then U ∩W is a subspace of V .
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Proof. First, note 0V ∈ U, 0V ∈ W =⇒ 0V ∈ U ∩W . Now, consider stability:

λ1, λ2 ∈ F, v1, v2 ∈ U ∩W =⇒ λ1v1 + λ2v2 ∈ U, λ1v1 + λ2v2 ∈ W

Hence stability holds.

§1.3 Sum of subspaces

Warning 1.1
The union of two subspaces is not, in general, a subspace. For instance, consider
R, iR ⊂ C. Their union does not span the space; for example, 1 + i /∈ R ∪ iR.

Definition 1.3 (Subspace Sum)
Let V be an F -vector space. Let U,W ≤ V . The sum U +W is defined to be the set

U +W = {u+ w : u ∈ U,w ∈ W}

Proposition 1.3
U +W is a subspace of V .

Proof. First, note 0U+W = 0U + 0W = 0V . Then, for λ1, λ2 ∈ F and f, g ∈ U +W we
have

f = f1 + f2

g = g1 + g2

with f1, g1 ∈ U and f2, g2 ∈ W . Hence

λ1f + λ2g = λ1(f1 + f2) + λ2(g1 + g2)
= (λ1f1 + λ2g1)

∈U

+ (λ1f2 + λg2)
∈W

∈ U +W.

Proposition 1.4
The sum U +W is the smallest subspace of V that contains both U andW .
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Proof. Left as an exercise.

§1.4 Quotients

Definition 1.4 (Quotient)
Let V be an F -vector space. Let U ≤ V . The quotient space V/U is the abelian
group V/U equipped with the scalar multiplication function

F × V/U → V/U ; (λ, v + U) 7→ λv + U

Note. Wemust check that the multiplication operation is well-defined. Indeed, suppose
v1 + U = v2 + U . Then,

v1 − v2 ∈ U =⇒ λ(v1 − v2) ∈ U =⇒ λv1 + U = λv2 + U ∈ V/U

Proposition 1.5
V/U is an F -vector space.

Proof. Left as an exercise

§1.5 Span

Definition 1.5 (Span of a family of vectors)
Let V be an F -vector space. Let S ⊂ V be a subset (so S is a set of vectors). We
define the span of S, written 〈S〉, as the set of finite linear combinations of elements
of S. In particular,

〈S〉 =
{∑

s∈S

λsvs : λs ∈ F, vs ∈ S, only finitely many nonzero λs

}

By convention, we specify

〈∅〉 = {0}

so that all spans are subspaces.

Remark 2. 〈S〉 is the smallest vector subspace of V containing S.
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Example 1.6
Let V = R3, and

S =


1

0
0

 ,
0

1
2

 ,
 3

−2
−4




Then we can check that

〈S〉 =


 a
b
2b

 : (a, b) ∈ R



Example 1.7
Let V = Rn. We define

ei =



0
...
0
1
0
...
0


where the 1 is in the ith position. Then V = 〈(ei)1≤i≤n〉.

Example 1.8
Let X be a set, and RX = {f : X → R}. Then let Sx : X → R be defined by

Sx(y) =
{

1 y = x

0 otherwise

Then, 〈(Sx)x∈X〉 =
{
f ∈ RX : f has finite support

}
, where the support of f is

defined to be {x : f(x) 6= 0}.

§1.6 Dimensionality

Definition 1.6
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Let V be an F -vector space. Let S ⊂ V . We say that S spans V if 〈S〉 = V . If S spans
V , we say that S is a generating family of V .

Definition 1.7 (Finite dimensional)
Let V be an F -vector space. V is finite dimensional if it is spanned by a finite set.

Definition 1.8 (Infinite dimensional)
Let V be an F -vector space. V is infinite dimensional if there is no family S with
finitely many elements which span V .

Example 1.9
Consider the set V = P[x] which is the set of polynomials on R. Further, consider
Vn = Pn[x] which is the subspace with degree less than or equal to n. Then Vn is
spanned by

{
1, x, x2, . . . , xn

}
, so Vn is finite-dimensional.

Conversely, V is infinite-dimensional; there is no finite set S such that 〈S〉 = V . The
proof is left as an exercise.

§1.7 Linear independence

Definition 1.9 (Linear independence)
We say that v1, . . . , vn ∈ V are linearly independent or free, if, for λi ∈ F ,

n∑
i=1

λivi = 0 =⇒ ∀i, λi = 0.

Remark 3. Linear dependence implies ∃ λi ∈ F and j ∈ [1, n] s.t. ∑n
i=1 λivi = 0 and

λj 6= 0. This implies vj = − 1
λj

∑n
i 6=j λivi, i.e. one of the vectors can be written as a linear

combination of the remaining ones.

Remark 4. If (vi)1≤i≤n are linearly independent, then

∀i ∈ {1, . . . , n}, vi 6= 0

§1.8 Bases
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Definition 1.10 (Basis)
S ⊂ V is a basis of V if

1. 〈S〉 = V

2. S is a linearly independent set

So, a basis is a linearly independent/free generating family.

Example 1.10
Let V = Rn. The canonical basis (ei) is a basis since we can show that they are free
and span V . Proof is left as an exercise.

Example 1.11
Let V = C, considered as a C-vector space. Then {1} is a basis. If V is a R-vector
space, {1, i} is a basis.

Example 1.12
Consider again P[x], polys on R. Then S = {xn : n ≥ 0} is a basis of P.

Lemma 1.1 (Unique decomposition for everything equivalent to being a basis)
Let V be an F -vector space. Then, (v1, . . . , vn) is a basis of V if and only if any vector
v ∈ V has a unique decomposition

v =
n∑

i=1
λivi, λi ∈ F

Remark 5. In the above definition, we call (λ1, . . . , λn) the coordinates of v in the basis
(v1, . . . , vn).

Proof. Suppose (v1, . . . , vn) is a basis of V . Then ∀v ∈ V there exists λ1, . . . , λn ∈ F
such that

v =
n∑

i=1
λivi
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So there exists a tuple of λ values. Suppose two such λ tuples exist. Then

v =
n∑

i=1
λivi =

n∑
i=1

λ′
ivi =⇒

n∑
i=1

(λi − λ′
i)vi = 0 =⇒ λi = λ′

i

since vi linearly independent. The converse is left as an exercise.

Lemma 1.2 (Some subset of a spanning set is a basis)
If 〈{v1, . . . , vn}〉 = V , then some subset of this set is a basis of V .

Proof. If (v1, . . . , vn) are linearly independent, this is a basis. Otherwise, one of the
vectors can be written as a linear combination of the others. So, up to reordering,

vn ∈ 〈{v1, . . . , vn−1}〉 =⇒ 〈{v1, . . . , vn}〉 = 〈{v1, . . . , vn−1}〉
=⇒ 〈{v1, . . . , vn−1}〉 = V

So we have removed a vector from this set and preserved the span. By induction,
we will eventually reach a basis.

§1.9 Steinitz exchange lemma

Theorem 1.1 (Steinitz exchange lemma)
Let V be a finite dimensional F -vector space. Let (v1, . . . , vm) be linearly independ-
ent, and (w1, . . . , wn) span V . Then,

1. m ≤ n; and

2. up to reordering, (v1, . . . , vm, wm+1, . . . wn) spans V .

Proof. Suppose that we have replaced ℓ ≥ 0 of the wi.

〈v1, . . . , vℓ, wℓ+1, . . . wn〉 = V

Ifm = ℓ, we are done. Otherwise, ℓ < m. Then, vℓ+1 ∈ V = 〈v1, . . . , vℓ, wℓ+1, . . . wn〉
Hence vℓ+1 can be expressed as a linear combination of the generating set. Since
the (vi)1≤i≤m are linearly independent (free), one of the coefficients on the wi are
nonzero. In particular, up to reorderingwe can expresswℓ+1 as a linear combination
of v1, . . . , vℓ+1, wℓ+2, . . . , wn. Inductively, we may replace m of the w terms with v
terms. Since we have replacedm vectors, necessarilym ≤ n.
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§1.10 Consequences of Steinitz exchange lemma

Corollary 1.1
Let V be a finite-dimensional F -vector space. Then, any two bases of V have the
same number of vectors. This number is called the dimension of V , dimF V .

Proof. Suppose the two bases are (v1, . . . , vn) and (w1, . . . , wm). Then, (v1, . . . , vn)
is free and (w1, . . . , wm) is generating, so the Steinitz exchange lemma shows that
n ≤ m. Vice versa,m ≤ n. Hencem = n.

Corollary 1.2
Let V be an F -vector space with finite dimension n. Then,

1. Any independent set of vectors has at most n elements, with equality if and
only if it is a basis.

2. Any spanning set of vectors has at least n elements, with equality if and only
if it is a basis.

Proof. Exercise.

§1.11 Dimensionality of sums

Proposition 1.6
Let V be an F -vector space. Let U,W be subspaces of V . If U,W are finite-
dimensional, then so is U +W , with

dimF (U +W ) = dimF U + dimF W − dimF (U ∩W )

Proof. Consider a basis (v1, . . . , vn) of the intersection. Extend this basis to a basis
(v1, . . . , vn, u1, . . . , um) of U and (v1, . . . , vn, w1, . . . , wk) of W . Then, we will show
that (v1, . . . , vn, u1, . . . , um, w1, . . . , wk) is a basis of dimF (U + W ), which will con-
clude the proof. Indeed, since any component of U + W can be decomposed as a
sum of some element of U and some element of W , we can add their decomposi-
tions together. Now we must show that this new basis is free.

n∑
i=1

αivi +
m∑

i=1
βiui +

k∑
i=1

γiwi = 0
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n∑
i=1

αivi +
m∑

i=1
βiui︸ ︷︷ ︸

∈U

= −
k∑

i=1
γiwi︸ ︷︷ ︸

∈W

k∑
i=1

γiwi ∈ U ∩W

k∑
i=1

γiwi =
n∑

i=1
δivi

n∑
i=1

(αi + δi)vi +
m∑

i=1
βiui = 0

βi = 0, αi = −δi

n∑
i=1

αivi +
k∑

i=1
γiwi = 0

αi = 0, γi = 0

Proposition 1.7
If V is a finite-dimensional F -vector space, and U ≤ V , then U and V/U are also
finite-dimensional. In particular, dimF V = dimF U + dimF (V/U).

Proof. Let (u1, . . . , uℓ) be a basis of U . We extend this basis to a basis of V :
(u1, . . . , uℓ, wℓ+1, . . . , wn). We claim that (wℓ+1 + U, . . . , wn + U) is a basis of the
vector space V/U .

Remark 6. If V is an F -vector space, and U ≤ V , then we say U is a proper subspace
if U 6= V . Then if U is proper, then dimF U < dimF V and dimF (V/U) > 0 because
(V/U) 6= ∅.

§1.12 Direct sums

Definition 1.11
LetV be anF -vector space andU,W be subspaces ofV . We say thatV = U⊕W , read
as the direct sum of U andW , if ∀v ∈ V, ∃!u ∈ U,∃!w ∈ W,u + w = v. We say that
W is a direct complement of U in V ; there is no uniqueness of such a complement.
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Lemma 1.3
Let V be an F -vector space, and U,W ≤ V . Then the following statements are
equivalent.

1. V = U ⊕W

2. V = U +W and U ∩W = {0}

3. For any basis B1 of U and B2 ofW , B1 ∪B2 is a basis of V

Proof. First, we show that (ii) implies (i). If V = U+W , then certainly ∀v ∈ V, ∃u ∈
U,∃w ∈ W, v = u+w, so it suffices to showuniqueness. Note, u1+w1 = u2+w2 =⇒
u1 − u2 = w2 −w1. The left hand side is an element of U and the right hand side is
an element ofW , so they must be the zero vector; u1 = u2, w1 = w2.

Now, we show (i) implies (iii). Suppose B1 is a basis of U and B2 is a basis of W .
Let B = B1 ∪B2. First, note that B is a generating family of U +W . Now we must
show that B is free. ∑

u∈B1

λuu︸ ︷︷ ︸
∈U

+
∑

w∈B2

λww︸ ︷︷ ︸
∈W

= 0

Hence both sums must be zero. Since B1, B2 are bases, all λ are zero, so B is free
and hence a basis.

Now it remains to show that (iii) implies (ii). We must show that V = U + W
and U ∩ W = {0}. Now, suppose v ∈ V . Then, v =

∑
u∈B1 λuu +

∑
w∈B2 λww. In

particular, V = U +W , since the λu, λw are arbitrary. Now, let v ∈ U ∩W . Then

v =
∑

u∈B1

λuu =
∑

w∈B2

λww =⇒ λu = λw = 0

Definition 1.12
Let V be an F -vector space, with subspaces V1, . . . , Vp ≤ V . Then

p∑
i=1

Vi = {v1, . . . , vℓ, vi ∈ Vi, 1 ≤ i ≤ ℓ}

14



We say the sum is direct, written
p⊕

i=1
Vi

if the decomposition is unique. Equivalently,

V =
p⊕

i=1
Vi ⇐⇒ ∃!v1 ∈ V1, . . . , vn ∈ Vn, v =

n∑
i=1

vi

Lemma 1.4
The following are equivalent:

1. ∑p
i=1 Vi =

⊕p
i=1 Vi

2. ∀ 1 ≤ i ≤ l, Vi ∩
(∑

j 6=i Vj

)
= {0}

3. For any basis Bi of Vi, B =
⋃n

i=1Bi is a basis of∑n
i=1 Vi.

Proof. Exercise.

15



§2 Linear maps

§2.1 Linear maps

Definition 2.1
If V,W are F -vector spaces, a map α : V → W is linear if

∀λ1, λ2 ∈ F, ∀v1, v2 ∈ V, α(λ1v1 + λ2v2) = λ1α(v1) + λ2α(v2)

Example 2.1
LetM be a matrix with n rows andm columns. Then the map α : Rm → Rn defined
by x 7→ Mx is a linear map.

Example 2.2
Let α : C([0, 1],R) → C([0, 1],R) defined by f 7→ a(f)(x) =

∫ x
0 f(t) dt. This is linear.

Example 2.3
Let x ∈ [a, b]. Then α : C([a, b],R) → R defined by f 7→ f(x) is a linear map.

Remark 7. Let U, V,W be F -vector spaces. Then,

1. The identity function iV : V → V defined by x 7→ x is linear.

2. If α : U → V and β : V → W are linear, then β ◦ α is linear.

Lemma 2.1
Let V,W be F -vector spaces. Let B be a basis for V . If α0 : B → W is any map (not
necessarily linear), then there exists a unique linear map α : V → W extending α0:
∀v ∈ B,α0(v) = α(v).

Proof. Let v ∈ V . Then, given B = (v1, . . . , vn).

v =
n∑

i=1
λivi

16



By linearity,

α(v) = α

(
n∑

i=1
λivi

)
=

n∑
i=1

λiα(vi) =
n∑

i=1
λiα0(vi)

Remark 8. This lemma is also true in infinite-dimensional vector spaces. Often, to define
a linear map, we instead define its action on the basis vectors, and then we ‘extend by
linearity’ to construct the entire map.

Remark 9. If α1, α2 : V → W are linear maps, then if they agree on any basis of V then
they are equal.

§2.2 Isomorphism

Definition 2.2 (Isomorphism)
Let V,W be F -vector spaces. A map α : V → W is an isomorphism if and only if

1. α is linear

2. α is bijective

If such an α exists, we say that V andW are isomorphic, written V ∼= W .

Remark 10. If α in the above definition is an isomorphism, then α−1 : W → V is linear.
Indeed, if w1, w2 ∈ W with w1 = α(v1) and w2 = α(v2),

α−1(w1 + w2) = α−1(α(v1) + α(v2)) = α−1α(v1 + v2) = v1 + v2 = α−1(w1) + α−1(w2)

Similarly, for λ ∈ F,w ∈ W ,

α−1(λw) = λα−1(w)

Lemma 2.2
Isomorphism is an equivalence relation on the class of all vector spaces over F .

Proof. 1. iV : V → V is an isomorphism

2. If α : V → W is an isomorphism, α−1 : W → V is an isomorphism.

3. If β : U → V, α : V → W are isomorphisms, then α ◦ β : U → W is an iso-
morphism.

17



The proofs of each part are left as an exercise.

Theorem 2.1
If V is an F -vector space of dimension n, then V ∼= Fn.

Proof. Let B = (v1, . . . , vn) be a basis for V . Then, consider α : V → Fn defined by

v =
n∑

i=1
λivi 7→

λ1
...
λn


We claim that this is an isomorphism. This is left as an exercise.

Remark 11. Choosing a basis for V is analogous to choosing an isomorphism from V to
Fn.

Theorem 2.2
Let V,W be F -vector spaces with finite dimensions n,m. Then,

V ∼= W ⇐⇒ n = m

Proof. If dimV = dimW = n, then there exist isomorphisms from both V and W
to Fn. By transitivity, therefore, there exists an isomorphism between V andW .

Conversely, if V ∼= W then let α : V → W be an isomorphism. LetB be a basis of V ,
thenwe claim that α(B) is a basis ofW . Indeed, α(B) spansW from the surjectivity
of α, and α(B) is free due to injectivity.

§2.3 Kernel and image

Definition 2.3
Let V,W be F -vector spaces. Let α : V → W be a linear map. We define the kernel
and image as follows.

N(α) = kerα = {v ∈ V : α(v) = 0}

Im(α) = {w ∈ W : ∃v ∈ V,w = α(v)}

18



Lemma 2.3
kerα is a subspace of V , and Imα is a subspace ofW .

Proof. Let λ1, λ2 ∈ F and v1, v2 ∈ kerα. Then

α(λ1v1 + λ2v2) = λ1α(v1) + λ2α(v2) = 0

Hence λ1v1 + λ2v2 ∈ kerα.

Now, let λ1, λ2 ∈ F , v1, v2 ∈ V , and w1 = α(v1), w2 = α(v2). Then

λ1w1 + λ2w2 = λ1α(v1) + λ2α(v2) = α(λ1v1 + λ2v2) ∈ Imα

Remark 12. α : V → W is injective if and only if kerα = {0}. Further, α : V → W is
surjective if and only if Imα = W .

Theorem 2.3
Let V,W be F -vector spaces. Let α : V → W be a linear map. Then α : V/ kerα →
Imα defined by

α(v + kerα) = α(v)

is an isomorphism. This is the isomorphism theorem from IA Groups.

Proof. First, note that α is well defined. Suppose v + kerα = v′ + kerα. Then
v − v′ ∈ kerα, hence

α(v − v′) = 0 =⇒ α(v) − α(v′) = 0

so α is indeed well defined.

Linearity of α follows from linearity of α.

Now, we show α is injective.

α(v + kerα) = 0 =⇒ α(v) = 0 =⇒ v ∈ kerα

Hence, v + kerα = 0 + kerα.

Further, α is surjective as if w ∈ Imα, ∃ v ∈ V s.t. w = α(v) = α(v + kerα).

§2.4 Rank and nullity
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Definition 2.4 (Rank and nullity)
The rank of α is

r(α) = dim Imα.

The nullity of α is

n(α) = dim kerα.

Theorem 2.4 (Rank-nullity theorem)
Let U, V be F -vector spaces such that the dimension of U is finite. Let α : U → V be
a linear map. Then,

dimU = r(α) + n(α)

Proof. We have proven that U/ kerα ∼= Imα. Hence, the dimensions on the left and
right match: dim(U/ kerα) = dim Imα.

dimU − dim kerαa = dim Imα

and the result follows.
aby proposition 1.7

Lemma 2.4 (Characterisation of isomorphisms)
Let V,W be F -vector spaces with equal, finite dimension. Let α : V → W be a linear
map. Then, the following are equivalent.

1. α is injective.

2. α is surjective.

3. α is an isomorphism.

Proof. Clearly, (iii) follows from (i) and (ii) and vice versa. The rest of the proof is
left as an exercise, which follows from the rank-nullity theorem.

Example 2.4
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V =


xy
z

 ∈ R3 : x+ y + z = 0


α : R3 → Rxy

z

 7→ x+ y + z

=⇒ kerα = V

Imα = R.

So by rank nullity

3 = n(α) + 1 =⇒ dimV = 2

§2.5 Space of linear maps

Let V andW be F -vector spaces. Consider the space of linear maps from V toW . Then
L(V,W ) = {α : V → W linear}.

Proposition 2.1 (Linear maps form a vector space)
L(V,W ) is an F -vector space under the operation

(α1 + α2)(v) = α1(v) + α2(v)
(λα)(v) = λ(α(v))

Further, if V andW are finite-dimensional, then so is L(V,W ) with

dimF L(V,W ) = dimF V dimF W

Proof. Proving that L(V,W ) is a vector space is left as an exercise. The dimension-
ality part is proven later, proposition 2.4.

§2.6 Matrices

Definition 2.5 (Matrix)
Anm× nmatrix over F is an array withm rows and n columns, with entries in F .

Notation. We writeMm×n(F ) for the set ofm× nmatrices over F .
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Proposition 2.2
Mm×n(F ) is an F -vector space under

((aij) + (bij)) = (aij + bij);

λ(aij) = (λaij)

Proof. Left as an exercise

Proposition 2.3
dimF Mm,n(F ) = mn.

Proof. Consider the basis defined by, the ‘elementary matrix’ for all i, j:

epq = δipδjq

Then (eij) is a basis ofMm×n(F ), since it spansMm×n(F )a and we can show that it
is free.
agiven A = (aij) ∈ Mn×n(F ), A = aijeij

§2.7 Linear maps as matrices

Let V,W be F -vector spaces and α : V → W be a linear map. Consider bases B of V
and C ofW :

B = (v1, . . . , vn); C = (w1, . . . , wm)

Then let v ∈ V . We have

v =
n∑

j=1
λjvj ≡ [v]B =

λ1
...
λn

 ∈ Fn

where the vector given is the coordinates in basis B.

Notation. [v]B is the coordinates of v in basis B.

We can equivalently find [w]C , the coordinates of w in basis C. We can now define a
matrix of some linear map α in the B,C basis.
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Definition 2.6 (Matrix of linear map)
The matrix representing α wrt B,C basis is

[α]B,C =
(
[α(v1)]C , . . . , [α(vn)]C

)
∈ Mm×n(F )

Note. Let [α]B,C = (aij), then by definition

α(vj) =
m∑

i=1
aijwi

Lemma 2.5
For all v ∈ V ,

[α(v)]C = [α]B,C · [v]B

Proof. We have

v =
n∑

i=1
λjvj

Hence

α

(
n∑

i=1
λjvj

)
=

n∑
j=1

λjα(vj) =
n∑

j=1
λi

m∑
i=1

aijwi =
m∑

i=1

 n∑
j=1

aijλj

wi

Lemma 2.6
Let β : U → V and α : V → W be linear maps. Then, if A,B,C are bases of U, V,W
respectively, then

[α ◦ β]A,C = [α]B,C · [β]A,B

Proof. Let A = [α]B,C and B = [β]A,B . Consider ul ∈ A (basis of U). Then

(α ◦ β)(ul) = α(β(ul))
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giving

α

∑
j

bjlvj

 =
∑

j

bjlα(vj) =
∑

j

bjl

∑
i

aijwi =
∑

i

∑
j

aijbjl

wi

where aijbjl is the (i, l) element of AB by the definition of the product of matrices.

Proposition 2.4
If V,W are F -vector spaces, and dimF V = n, dimF W = m, then

L(V,W ) ∼= Mm×n(F )

which implies the dimensionality of L(V,W ) in F ism× n.

Proof. Consider two bases B,C of V,W . We claim that

θ : L(V,W ) → Mm×n(F )
α 7→ [α]B,C

is an isomorphism.

First, note that θ is linear.

[λ1α1 + λ2α2] = λ1[α1]B,C + λ2[α2]B,C .

Also, θ is surjective; consider anymatrixA = (aij) and consider α : vj 7→
∑m

i=1 aijwi

defined on B. Then this is certainly a linear map which extends uniquely by linear-
ity to A, giving [α]B,C = (aij) = Aa.

Now, θ is injective since [α]B,C = 0 =⇒ α = 0.
aProving this left as an exercise

Remark 13. IfB,C are bases ofV,W respectively, and εB : V → Fn is defined by v 7→ [v]B ,
and analogously for εC , then the following diagram commutes

V W

Fn Fm

α

εC

[α]B,C

εB
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We can see that

[α]B,C ◦ εB = εC ◦ α

so the operations commute.

Example 2.5
Let α : V → W be a linear map and Y ≤ V , where V,W are finite-dimensional.
Then let α(Y ) = Z ≤ W . Consider a basis B of V , such that B′ = (v1, . . . , vk) is a
basis of Y completed byB′′ = (vk+1, . . . , vn) intoB = B′ ∪B′′. Then let C be a basis
of W, such that C ′ = (w1, . . . , wℓ) is a basis of Z completed by C ′′ = (wℓ+1, . . . , wm)
into C = C ′ ∪ C ′′. Then

[α]B,C =
(
α(v1) . . . α(vk) α(vk+1) . . . α(vn)

)
For 1 ≤ i ≤ k, α(vi) ∈ Z since vi ∈ Y, α(Y ) = Z. So thematrix has an upper-left ℓ×k
block Awhich is α : Y → Z on the basis B′, C ′. We can show further that α induces
a map α : V/Y → W/Z by v+ Y 7→ α(v) +Z. This is well-defined; v1 + Y = v2 + Y
implies v1 − v2 ∈ Y hence α(v1 − v2) ∈ Z as required. The bottom-right block is
[α]B′′,C′′ .

§2.8 Change of basis

Suppose we have two basesB = {v1, . . . , vn}, B′ = {v′
1, . . . , v

′
n} of V and corresponding

C,C ′ forW . If we have a linear map [α]B,C , we are interested in finding the components
of this linear map in another basis, that is,

[α]B,C 7→ [α]B′,C′

Definition 2.7 (Change of basis matrix)
The change of basis matrix P from B′ to B is

P =
(
[v′

1]B · · · [v′
n]B

)
which is the identity map in B′, written

P = [I]B′,B
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Lemma 2.7
For a vector v,

[v]B = P [v]B′

Proof. We have

[α(v)]C = [α]B,C · [v]C

Since P = [I]B′,B ,

[I(v)]B = [I]B′,B · [v]B′ =⇒ [v]B = P [v]B′

as required.

Remark 14. P is an invertible n× n square matrix. In particular,

P−1 = [I]B,B′

Indeed,

[α ◦ β]A,C = [α]B,C [β]A,B

=⇒ In = [I · I]B,B = [I]B′,B · [I]B,B′

where In is the n× n identity matrix.

Warning 2.1

P = ([v′
1]B, . . . , [v′

n]B)
=⇒ [v]B = P [v]B′

=⇒ [v]B′ = P−1[v]B

Proposition 2.5
If α is a linear map from V toW , and P = [I]B′,B, Q = [I]C′,C

a, we have

A′ = [α]B′,C′ = [I]C,C′ [α]B,C [I]B,′B = Q−1AP

where A = [α]B,C , A
′ = [α]B′,C′ .

aP, Q invertible.
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Proof.

[α(v)]C = Q[α(v)]C′

= Q[α]B′,C′ [v]B′

[α(v)]C = [α]B,C [v]B
= AP [v]B′

∴ ∀v, QA′[v]B′ = AP [v]B′

∴ QA′ = AP

as required.

§2.9 Equivalent matrices

Definition 2.8 (Equivalent matrices)
Matrices A,A′ ∈ Mm,n(F ) are called equivalent if

A′ = Q−1AP

for some invertiblem×m,n× nmatrices Q,P .

Remark 15. This defines an equivalence relation onMm,n(F ).

• A = I−1
m AIn;

• A′ = Q−1AP =⇒ A = QA′P−1;

• A′ = Q−1AP,A′′ = (Q′)−1A′P ′ =⇒ A′′ = (QQ′)−1A(PP ′).

Proposition 2.6
Let V,W be vector spaces over F with dimF V = n, dimF W = m. Let α : V → W
be a linear map. Then there exists a basis B of V and a basis C ofW such that

[α]B,C =
(
Ir 0
0 0

)

so the components of the matrix are exactly the identity matrix of size r in the top-
left corner, and zeroes everywhere else.

Proof. We first fix r ∈ N such that dim kerα = n− r. Then we will construct a basis
{vr+1, . . . , vn} of the kernel. We extend this to a basis of the entirety of V , that is,
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{v1, . . . , vn}. Then, we want to show that

{α(v1), . . . , α(vr)}

is a basis of Imα. Indeed, it is a generating family:

v =
n∑

i=1
λivi

α(v) =
n∑

i=1
λiα(vi)

=
r∑

i=1
λiα(vi) as vr+i ∈ kerα

Then if y ∈ Imα, there exists v such that α(v) = y. So

y =
r∑

i=1
λiα(vi) ∈ 〈α(v1), . . . , α(vr)〉.

Further, it is a free family:
r∑

i=1
λiα(vi) = 0

α

(
r∑

i=1
λivi

)
= 0

r∑
i=1

λivi ∈ kerα

r∑
i=1

λivi =
n∑

i=r+1
λivi as vr+i is a basis of kerα.

r∑
i=1

λivi −
n∑

i=r+1
λivi = 0

But since {v1, . . . , vn} is a basis, λi = 0 for all i.

Hence {α(v1), . . . , α(vr)} is a basis of Imα. Now, we extend this basis to the whole
ofW to form

{α(v1), . . . , α(vr), wr+1, . . . , wn}

Now,

[α]BC =
(
α(v1) · · · α(vr) α(vr+1) · · · α(vn)

)
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=
(
Ir 0
0 0

)

Remark 16. This also proves the rank-nullity theorem:

rankα+ nullα = n

Corollary 2.1
Anym× nmatrix A is equivalent to a matrix of the form(

Ir 0
0 0

)

where r = rankA.

§2.10 Column rank and row rank

Definition 2.9 (Column rank)
Let Aa ∈ Mm,n(F ). Then, the column rank of A, here denoted rc(A), is the dimen-
sion of the subspace of Fn spanned by the column vectors.

rc(A) = dim span {c1, . . . , cn}
aA = (c1 | · · · | cn), cn ∈ F m.

Definition 2.10 (Row rank)
The row rank is the column rank of A⊺.

Remark 17. If α is a linear map, represented by Awith respect to some basis, then:

rankα = rc(A) = dim Imα

Proof. Proof of rankα = rc(A) is left as an exercise.

Proposition 2.7
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Two matrices are equivalent if they have the same column rank:

rc(A) = rc(A′).

Proof. ( =⇒ ) If thematrices are equivalent, then they correspond to the same linear
map α in two different basis

rc(A) = rankα
rc(A′) = rankα

=⇒ rc(A) = rc(A′)

(⇐=) Conversely, if rc(A) = rc(A′) = r, then A,A′ are equivalent to(
Ir 0
0 0

)

By transitivity, A,A′ are equivalent.

Theorem 2.5
Column rank rc(A) and row rank rc(A⊺) are equivalent.

Proof. Let r = rc(A). Then,

Q−1AP =
(
Ir 0
0 0

)
m×n

Then take the transpose:

(Q−1AP )⊺ = P ⊺A⊺
(
Q−1

)⊺
= P ⊺A⊺(Q⊺)−1

=
(
Ir 0
0 0

)⊺

m×n

=
(
Ir 0
0 0

)
n×m

Then rc(A⊺) = r = rc(A).

Note. We can swap the transpose and inverse on Q because

(AB)⊺ = B⊺A⊺(
QQ−1

)⊺
=
(
Q−1

)⊺
Q⊺
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I =
(
Q−1

)⊺
Q⊺

(Q⊺)−1 =
(
Q−1

)⊺

So we can drop the concepts of column and row rank, and just talk about rank as a
whole.

§2.11 Conjugation and similarity

Consider the following special case of changing basis.

Definition 2.11
If α : V → V is linear, α is called an endomorphism.

If B = C,B′ = C ′ then the special case of the change of basis formula is

[α]B′,B′ = P−1[α]B,BP

Definition 2.12 (Similar matrices)
Let A,A′ be n×n (square) matrices. We say that A and A′ are similar or conjugate
iff there exists P (n× n square invertible matrix) such that A′ = P−1AP .

This is a central concept when we will study diagonalisation of matrices, Spectral the-
ory.

§2.12 Elementary operations

Definition 2.13 (Elementary column operation)
An elementary column operation is

1. swap columns i, j (i 6= j)

2. replace column i by λmultiplied by the column (λ 6= 0, λ ∈ F )

3. add λmultiplied by column i to column j (i 6= j)
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Wedefine analogously the elementary row operations. Note that these elementary oper-
ations are invertible (for λ 6= 0). These operations can be realised through the action of
elementary matrices. For instance, the column swap operation can be realised using

Tij =

Ii−1 0 0
0 A 0
0 0 I

 ; A =

0 0 1
0 I 0
1 0 1


To multiply a column by λ,

ni,λ =

Ii−1 0 0
0 λ 0
0 0 I


To add a multiple of a column,

cij,λ = I + λEij

where Eij is the matrix defined by elements (eij)pq = δipδjq.

An elementary column (or row) operation can be performed by multiplying A by
the corresponding elementary matrix from the right (on the left for row opera-
tions).

Proof. Left as an exercise.

Example 2.6 (
1 2
3 4

)(
0 1
1 0

)
=
(

2 1
4 3

)
.

We can prove corollary 2.1 constructively:

Proof. This will essentially provide a constructive proof that any m × n matrix is
equivalent to (

Ir 0
0 0

)
.

We will start with a matrix A. If all entries are zero, we are done.
So we will pick aij = λ 6= 0, and swap rows i, 1 and columns j, 1. This ensures that
a11 = λ 6= 0.
Now we multiply column 1 by 1

λ so a11 = 1 now.
Finally, we can clear out row 1 and column 1 by subtracting multiples of rows or
columns (3rd elementary operation). Then we can perform similar operations on
the (m − 1) × (n − 1) matrix in the bottom right block and inductively finish this
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process. We end up with:(
Ir 0
0 0

)
= E′

p . . . E
′
1︸ ︷︷ ︸

row operations

A E1 . . . Ec︸ ︷︷ ︸
column operations

= Q−1AP

§2.13 Gauss’ pivot algorithm

If only row operations are used, we can reach the row echelon form of the matrix, a
specific case of an upper triangular matrix.

0 . . . 0 1 . . . . . .
0 . . . . . . . . . 1 . . .
...

...
0 . . . . . . . . . . . . 0


On each row, there are a number of zeroes until there is a one, called the pivot.

First, we assume that aij 6= 0.
We swap rows i, 1.
Then divide the first row by λ = ai1 to get a one in the top left.
We can use this one to clear the rest of the first column.
Then, we can repeat on the next column, and iterate.

This is a technique for solving a linear system of equations.

§2.14 Representation of square invertible matrices

Lemma 2.8
If A is an n × n square invertible matrix, then we can obtain In using only row ele-
mentary operations, or only column elementary operations.

Proof. We show an algorithm that constructs this In. This is exactly going to invert
the matrix, since the resultant operations can be combined to get the inverse matrix.
We will show here the proof for column operations.

We argue by induction on the number of rows.
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Suppose we can make the form (
Ik 0
A B

)

We want to obtain the same structure with k + 1 rows.

We claim that there exists j > k such that ak+1,j 6= 0. Indeed, otherwise we can
show that the vector 

0
...
1
...
0


= δk+1,i

is not in the span of the column vectors of A.a This contradicts the invertibility of
the matrix.

Now, we will swap columns k + 1, j and divide this column by λ. We can now use
this 1 to clear the rest of the k + 1 row using elementary operations of type 3.

The desired results follows from induction.
aLeft as an exercise to check this.

Remark 18. Inductively, we have found AE1 . . . Ec = In where Ec are elementary. Thus,
A−1 = E1 . . . Ec and so this is an algorithm for computing A−1 and so solving linear
systems of equations.

Proposition 2.8
Any invertible square matrix is a product of elementary matrices.

Proof. The proof is exactly the proof of the lemma above.
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§3 Dual spaces

§3.1 Dual spaces

Definition 3.1 (Dual Space)
Let V be an F -vector space. Then V ⋆ is the dual of V , defined by

V ⋆ = L(V, F ) = {α : V → F}

where the α are linear.
If α : V → F is linear, then we say α is a linear form. So the dual of V is the set of
linear forms on V .

Example 3.1
For instance, the trace tr : Mn,n(F ) → F is a linear form on Mn,n(F ). So tr ∈
M∗

n,n(F )

Example 3.2
Consider functions f : [0, 1] → R. We can define Tf : C∞([0, 1],R) → R such that
φ 7→

∫ 1
0 f(x)φ(x) dx. I.e. Tf (φ) =

∫ 1
0 f(x)φ(x) dx.

Then Tf is a linear form on C∞([0, 1],R) (R vector space).
The function defines a linear form. We can then reconstruct f given Tf . This math-
ematical formulation is called distribution (which is about the generalisation of the
notion of functions).

Remark 19. Duality is not that useful in finite dimensions but it is in infinite.

Lemma 3.1 (Dual Basis)
Let V be an F -vector space with a finite basis B = {e1, . . . , en}. Then there exists a
basis B⋆ for V ⋆ given by

B⋆ = {ε1, . . . , εn}; εj
a
(

n∑
i=1

aiei

)
= aj

We call B⋆ the dual basis for B.
aRecall εj is a linear form
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Remark 20. Kronecker symbol, δij .

εj

(
n∑

i=1
aiei

)
= aj ⇐⇒ εj(ei) = δij

Proof. Let

εj(ei) = δij

First, we will show that the set of linear forms as defined is free. For all i,
n∑

j=1
λjεj = 0

∴

 n∑
j=1

λjεj

ei = 0

n∑
j=1

λj εj(ei)︸ ︷︷ ︸
δij

= 0

λi = 0

Now we show that the set spans V ⋆. Suppose α ∈ V ⋆, x ∈ V .

α(x) = α

 n∑
j=1

λjej


=

n∑
i=1

λjα(ej)

Conversely, we can write
n∑

i=1
α(ej)︸ ︷︷ ︸

∈F

εj ∈ V ⋆

Thus, (
n∑

i=1
α(ej)εj

)
(x) =

n∑
j=1

α(ej)εj

(
n∑

k=1
λkek

)

=
n∑

j=1
α(ej)

n∑
k=1

λkεj(ek)
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=
n∑

j=1
α(ej)

n∑
k=1

λkδjk

=
n∑

j=1
α(ej)λj

= α(x)

We have then shown that

α =
n∑

j=1
α(ej)εj

as required.

Corollary 3.1
If V is finite-dimensional, V ⋆ has the same dimension.a
aVery different in infinite dimension.

Remark 21. It is sometimes convenient to think of V ⋆ as the spaces of row vectors of
length dimV over F . For instance, consider the basis B = (e1, . . . , en), so x =

∑n
i=1 xiei.

Then we can pick (ε1, . . . , εn) a basis of V ⋆, so α =
∑n

i=1 αiεi. Then

α(x) =
n∑

i=1
αiεi(x) =

n∑
i=1

αiε

 n∑
j=1

xjej

 =
n∑

i=1
αixi

This is exactly

(
α1 · · · αn

)x1
...
xn


which essentially defines a scalar product between the two spaces.

§3.2 Annihilators

Definition 3.2 (Annihilator)
Let U ≤ V . Then the annihilator of U is

U0 = {α ∈ V ⋆ : ∀u ∈ U,α(u) = 0}
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Lemma 3.2 1. U0 ≤ V ⋆;

2. If U ≤ V and dimV < ∞, then dimV = dimU + dimU0.

Proof. 1. First, note that 0 ∈ U0. If α, α′ ∈ U0, then for all u ∈ U ,

(α+ α′)(u) = α(u) + α′(u) = 0

Further, for all λ ∈ F ,

(λα)(u) = λα(u) = 0

Hence U0 ≤ V ⋆.

2. Let U ≤ V and dimV = n. Let (e1, . . . , ek) be a basis of U , completed into a
basis B = (e1, . . . , ek, ek+1, . . . , en) of V . Let (ε1, . . . , εn) be the dual basis B⋆.
We then will prove that

U0 = 〈εk+1, . . . , εn〉

Pick i > k, then εi(ej) = δij = 0 for 1 ≤ j ≤ k. Hence εi ∈ U0. Thus
〈εk+1, . . . , εn〉 ⊂ U0.
Conversely, letα ∈ U0. Thenα =

∑n
i=1 αiεi. For i ≤ k, α ∈ U0 henceα(ei) = 0

for 1 ≤ i ≤ k. Hence,

α =
n∑

i=k+1
αiεi

Thus

α ∈ 〈εk+1, . . . , εn〉

so U0 ⊂ 〈εk+1, . . . , εn〉 as required.

§3.3 Dual maps

Lemma 3.3 (Dual Map)
Let V,W be F -vector spaces. Let α ∈ L(V,W ). Then there exists a unique α⋆ ∈
L(W ⋆, V ⋆)

α⋆ : W ⋆ → V ⋆

ε 7→ ε ◦ α
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called the dual map.

Proof. First, note ε(α) : V → F is a linear map. Hence, ε ◦ α ∈ V ⋆.
Now we must show α⋆ is linear.

α⋆(θ1 + θ2) = (θ1 + θ2)(α) = θ1 ◦ α+ θ2 ◦ α = α⋆(θ1) + α⋆(θ2)

Similarly, we can show

α⋆(λθ) = λα⋆(θ)

as required. Hence α⋆ ∈ L(W ⋆, V ⋆).

Proposition 3.1
Let V,W be finite-dimensional F -vector spaces with bases B,C respectively. Let
B⋆, C⋆ be the dual basis of V ⋆,W ⋆. Then

[α⋆]C⋆,B⋆ = [α]⊺B,C

Thus, we can think of the dual map as the adjoint of α.

Proof. This follows from the definition of the dual map. Let B = (b1, . . . , bn), C =
(c1, . . . , cm), B⋆ = (β1, . . . , βn), C⋆ = (γ1, . . . , γm). Let [α]B,C = (aij). Recall α⋆ :
W ⋆ → V ⋆. Then, we compute

α⋆(γr)(bs) = γr︸︷︷︸
∈W ⋆

◦α(bs)︸ ︷︷ ︸
∈W

= γr

(∑
t

atsct

)
︸ ︷︷ ︸

sth column vector

=
∑

t

atsγr(ct)

=
∑

t

atsδtr

= ars

We can conversely write [α⋆]C⋆,B⋆ = (mij) and

α⋆(γr) =
n∑

i=1
mirβi
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α⋆(γr)(bs) =
n∑

i=1
mirβi(bs)

=
n∑

i=1
mirδis

= msr

Thus,

ars = msr

as required.

§3.4 Properties of the dual map

Let α ∈ L(V,W ), and α⋆ ∈ L(W ⋆, V ⋆). Let B and C be bases of V,W respectively, and
B⋆, C⋆ be their duals. We have proven that

[α]B,C = [α⋆]⊺C⋆,B⋆

Lemma 3.4
Suppose thatE = (e1, . . . , en) and F = (f1, . . . , fn) are bases of V . Let P = [I]F,E be
a change of basis matrix from F toE. The basesE⋆ = (ε1, . . . , εn), F ⋆ = (η1, . . . , ηn)
are the corresponding dual bases.
Then, the change of basis matrix from F ⋆ to E⋆ is(

P−1
)⊺

Proof. Consider

[I]F ⋆,E⋆ = [I]⊺E,F =
(
[I]−1

F,E

)⊺
=
(
P−1

)⊺

Lemma 3.5
Let V,W be F -vector spaces. Let α ∈ L(V,W ). Let α⋆ ∈ L(W ⋆, V ⋆) be the corres-
ponding dual map. Then, denoting N(α) for the kernel of α,

1. N(α⋆) = (Imα)0a, so α⋆ is injective if and only if α is surjective.

2. Imα⋆ ≤ (N(α))0, with equality if V,W are finite-dimensional. In this finite-
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dimensional case, α⋆ is surjective if and only if α is injective.
aThe annihilator of Im α

Remark 22. This is a fundamental property.
In many applications (especially in infinite dimensions) e.g. controllability, it is often
simpler to understand the dual map α⋆ than it is to understand α.

Proof. First, we prove (i). Let ε ∈ W ⋆. Then, ε ∈ N(α⋆) ⇐⇒ α⋆(ε) = 0. Hence,
α⋆(ε) = ε ◦ α = 0. So for any v ∈ V , ε(α(v)) = 0. Equivalently, ε is an element of
the annihilator of Imα.

Now, we will show (ii). Let ε ∈ Imα⋆. Then α⋆(φ) = ε for some φ ∈ W ⋆. Then,
for all u ∈ N(α), ε(u) = (α⋆(φ))(u) = φ ◦ α(u) = φ(α(u)) = 0. Certainly then
ε ∈ (N(α))0. Then, Imα⋆ ≤ (N(α))0.

In the finite-dimensional case, we can compare the dimension of these two spaces.

dim Imα⋆ = r(α⋆) = r([α⋆]C⋆,B⋆) = r
(
[α]⊺B,C

)
= r([α]B,C) = r(α) = dim Imα

Due to the rank-nullity theorem, dim Imα⋆ = dim Imα = dimV − dimN(α) =
dim

[
(N(α))0] by lemma 3.2. Hence,

Imα⋆ ≤ (N(α))0; dim Imα⋆ = dim(N(α))0

The dimensions are equal, and one is a subspace of the other, hence the spaces are
equal.

§3.5 Double duals

Definition 3.3 (Double Dual)
Let V be an F -vector space. Let V ⋆ be the dual of V . The double dual or bidual of
V is

V ⋆⋆ = L(V ⋆, F ) = (V ⋆)⋆

Remark 23. This is a very important space in infinite dimensions.
In general, there is no obvious relation between V and V ⋆ (unless Hilbertian structure).
However, the following useful facts hold about V and V ⋆⋆.

1. There is a large class of function spaces where V ∼= V ⋆⋆. These are called reflexive
spaces.
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Example 3.3
p > r, Lp(R) = {f : R → R :

∫
R |f(x)|p dx < +∞}. This is a reflexive space

(this uses the Lebesgue integral as this space is not complete using Riemann
integral.)

Such spaces are investigated in the study of Banach spaces.

2. There is a canonical embedding from V to V ⋆⋆. In particular, there exists i in
L(V, V ⋆⋆) which is injective.

Theorem 3.1
V embeds into V ⋆⋆.

Proof. Choose a vector v ∈ V and define the linear form v̂ ∈ L(V ⋆, F ) such that

v̂(ε) = ε(v)

We want to show v̂ ∈ V ⋆⋆. If ε ∈ V ⋆, ε(v) ∈ F . Further, λ1, λ2 ∈ F and ε1, ε2 ∈ V ⋆

give

v̂(λ1ε1 + λ2ε2) = (λ1ε1 + λ2ε2)(v) = λ1ε1(v) + λ2ε2(v) = λ1v̂(ε1) + λ2v̂(ε2)

Theorem 3.2
If V is a finite-dimensional vector space over F , then i : V → V ⋆⋆ given by i(v) = v̂
is an isomorphisma.
aIn infinite dimension, we can show under canonical assumptions (Banach space) that this is an
injection.

Proof. We will show i is linear. If v1, v2 ∈ V, λ1, λ2 ∈ F, ε ∈ V ⋆, then

i(λ1v1 + λ2v2)(ε) = ε(λ1v1 + λ2v2) = λ1ε(v1) + λ2ε(v2) = λ1v̂1(ε) + λ2v̂2(ε).

Now, we will show that i is injective for finite-dimensional V . Let e ∈ V \ {0}.
We will show that e 6∈ ker i. We extend e into a basis (e, e2, . . . , en) of V . Now, let
(ε, ε2, . . . , εn) be the dual basis. Then ê(ε) = ε(e) = 1. In particular, ê 6= 0. Hence
ker i = {0}, so it is injective.

We now show that i is an isomorphism. We need to simply compute the dimension
of the image under i. Certainly, dimV = dimV ⋆ = dim(V ⋆)⋆ = dimV ⋆⋆. Since i is
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injective, dimV = dimV ⋆⋆. So i is surjective as required.

Lemma 3.6
Let V be a finite-dimensional F -vector space. Let U ≤ V . Then,

Û a = U00

After identifying V and V ⋆⋆, we typically say

U = U00

although this is is incorrect notation and not an equality (but an isomorphism).
aImage of U under i map

Proof. We will show that Û ≤ U00. Indeed, let u ∈ U , then by definition

∀ε ∈ U0, ε(u) = 0 =⇒ û(ε) = 0

Hence û ∈ U00 and so Û ≤ U00.

Now, we will compute dimension: dimU00 = dimV − dimU0 = dimU . Since
Û ∼= U , their dimensions are the same, so U00 = Û .

Remark 24. Due to this identification of V ⋆⋆ and V , we can define

T ≤ V ⋆, T 0 = {v ∈ V : ∀θ ∈ T, θ(v) = 0}

Lemma 3.7
Let V be a finite-dimensional F -vector space. Let U1, U2 be subspaces of V . Then

1. (U1 + U2)0 = U0
1 ∩ U0

2 ;

2. (U1 ∩ U2)0 = U0
1 + U0

2

Proof. Let θ ∈ V ⋆. Then θ ∈ (U1 + U2)0 ⇐⇒ ∀u1 ∈ U1, u2 ∈ U2, θ(u1 + u2) = 0. Iff
θ(u) = 0 for all u ∈ U1 ∪ U2 by linearity. Iff θ ∈ U0

1 ∩ U0
2 .

Now, take the annihilator of (i) and U00 = U to complete part (ii).
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§4 Bilinear Forms

§4.1 Introduction

Definition 4.1 (Bilinear Forms)
Let U, V be F -vector spaces. Then φ : U × V → F is a bilinear form if it is ‘linear in
both components’. For example, φ at a fixed u ∈ U is a linear form V → F and an
element of V ⋆; and φ at a fixed v ∈ V is a linear form U → F and an element of U⋆

Example 4.1
Consider the map V × V ⋆ → F given by

(v, θ) 7→ θ(v).

You can check this is a bilinear map.

Example 4.2 (Scalar Product)
The scalar product on U = V = Rn is given by

ψ : Rn × Rn → R

(x, y) 7→
n∑

i=1
xiyi

You can check this is a bilinear map.

Example 4.3
Let U = V = C([0, 1],R) and consider

φ(f, g) =
∫ 1

0
f(t)g(t) dt

You can check this is a bilinear map.

Definition 4.2 (Matrix of a bilinear form in a basis)
IfB = (e1, . . . , em) is a basis ofU andC = (f1, . . . , fn) is a basis ofV , andφ : U×V →
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F is a bilinear form, then the matrix of the bilinear form in this basis is

[φ]B,C =

φ(ei, fj)︸ ︷︷ ︸
∈F


1≤i≤m,1≤j≤n

Lemma 4.1
We can link φwith its matrix in a given basis as follows.

φ(u, v) = [u]⊺B[φ]B,C [v]C

Proof. Let u =
∑m

i=1 λiei and v =
∑n

j=1 µjfj . Then by linearity:

φ(u, v) = φ

 m∑
i=1

λiei,
n∑

j=1
µjfj

 =
m∑

i=1

n∑
j=1

λiµjφ(ei, fj) = [u]⊺B[φ]B,C [v]C .

Check these equality signs are correct.

Remark 25. Note that [φ]B,C is the only matrix such that φ(u, v) = [u]⊺B[φ]B,C [v]C .

Definition 4.3
Let φ : U × V → F be a bilinear form. Then φ induces two linear maps given by the
partial application of a single parameter to the function.

φL : U → V ⋆; φL(u) : V → F ; v 7→ φ(u, v)

φR : V → U⋆; φR(v) : U → F ; u 7→ φ(u, v)

In particular,

φL(u)(v) = φ(u, v) = φR(v)(u)

Lemma 4.2
Let B = (e1, . . . , em) be a basis of U , and let B⋆ = (ε1, . . . , εm) be its dual; and let
C = (f1, . . . , fn) be a basis of V , and letC⋆ = (η1, . . . , ηn) be its dual. LetA = [φ]B,C .
Then

[φR]C,B⋆ = A; [φL]B,C⋆ = A⊺
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Proof.

φL(ei)(fj) = φ(ei, fj) = Aij

Since ηj is the dual of fj ,

φL(ei) =
∑

i

Aijηj

Further,

φR(fj)(ei) = φ(ei, fj) = Aij

and then similarly

φR(fj) =
∑

i

Aijεi

Definition 4.4 (Left/ Right Kernel)
kerφL is called the left kernel of φ. kerφR is the right kernel of φ.

Definition 4.5 (Degenerate/ Non-Degenerate Bilinear Form)
We say that φ is non-degenerate if kerφL = kerφR = {0}. Otherwise, φ is degen-
erate.

Lemma 4.3
Let B be a basis of U , and let C be a basis of V , where U, V are finite-dimensional.
Let φ : U × V → F be a bilinear form. Let A = [φ]B,C .
Then, φ is non-degenerate if and only if A is invertible.

Corollary 4.1
If φ is non-degenerate, then dimU = dimV .

Proof. Suppose φ is non-degenerate. Then kerφL = kerφR = {0}. This is equi-
valent to saying that n(φL) = n(φR) = 0. We can use the rank-nullity theorem to
state that r(A⊺) = dimU and r(A) = dimV . This is equivalent to saying that A is
invertible. Note that this forces dimU = dimV as r(A⊺) = r(A).
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Remark 26. The canonical example of a non-degenerate bilinear form is the scalar
product Rn × Rn → R represented by the identity matrix in the standard basis1.

Corollary 4.2
If U and V are finite-dimensional with dimU = dim V , then choosing a non-
degenerate bilinear form φ : U × V → F is equivalent to choosing an isomorphism
φL : U → V ⋆.

Definition 4.6 (Orthogonals)
If T ⊂ U , then we define

T⊥ = {v ∈ V : ∀t ∈ T, φ(t, v) = 0}a

Further, if S ⊂ V , we define

⊥S = {u ∈ U : ∀s ∈ S, φ(u, s) = 0}

These are called the orthogonals of T and S.
aφ : (U, V ) → F .

§4.2 Change of basis for bilinear forms

Proposition 4.1 (Change of basis for bilinear forms)
Let B,B′ be bases of U and P = [I]B′,B , let C,C ′ be bases of V andQ = [I]C′,C , and
finally let φ : U × V → F be a bilinear form. Then

[φ]B′,C′ = P ⊺[φ]B,CQ

Proof. We have φ(u, v) = [u]⊺B[φ]B,C [v]C . Changing coordinates, we have

φ(u, v) = (P [u]B′)⊺[φ]B,C(Q[v]C′) = [u]⊺B′(P ⊺[φ]B,CQ)[v]C′a

aThere is only one matrix A s.t. φ(u, v) = [u]⊺
B′ A[v]C′ , see earlier remark.

Lemma 4.4
The rank of a bilinear form φ, denoted r(φ) is the rank of any matrix representing

1[φ]B,B = I where B the standard bases as φ(ei, ej) = δij
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φ. This quantity is well-defined.

Proof. For any invertible matrices P,Q, r(P ⊺AQ) = r(A).

Remark 27. r(φ) = r(φR) = r(φL), since r(A) = r(A⊺).

We will see more applications later in the course, especially when we see scalar
products.
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§5 Determinant and Traces

§5.1 Trace

Definition 5.1 (Trace)
The trace of a square matrix A ∈ Mn,n(F ) ≡ Mn(F ) is defined by

trA =
n∑

i=1
Aii

Remark 28.

Mn(F ) → F

A 7→ trA

The trace is a linear form.

Lemma 5.1
tr(AB) = tr(BA) for any matrices A,B ∈ Mn(F ).

Proof. We have

tr(AB) =
n∑

i=1

n∑
j=1

aijbji =
n∑

j=1

n∑
i=1

bjiaij = tr(BA)

Corollary 5.1
Similar matrices have the same trace.

Proof.

tr
(
P−1AP

)
= tr

(
AP−1P

)
= trA

Definition 5.2 (Trace of a linear)
If α : V → V is linear, we can define the trace of α as

trα = tr[α]B
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for any basis B. This is well-defined by the corollary above.

Lemma 5.2
If α : V → V is linear, α⋆ : V ⋆ → V ⋆ satisfies

trα = trα⋆

Proof.

trα = tr[α]B = tr[α]⊺Ba = tr[α⋆]B⋆ = trα⋆

aCheck tr[α]B = tr[α]⊺B

§5.2 Permutations and transpositions

Recall the following facts about permutations and transpositions. Sn is the group of
permutations of the set {1, . . . , n}; the group of bijections σ : {1, . . . , n} → {1, . . . , n}.
A transposition τkℓ = (k, ℓ) is defined by k 7→ ℓ, ℓ 7→ k, x 7→ x for x 6= k, ℓ. Any per-
mutation σ can be decomposed as a product of transpositions. This decomposition is
not necessarily unique, but the parity of the number of transpositions is well-defined.
We say that the signature of a permutation, denoted ε : Sn → {−1, 1}, is 1 if the de-
composition has even parity and −1 if it has odd parity. We can then show that ε is a
homomorphism.

§5.3 Determinant

Definition 5.3 (Determinant)
Let A ∈ Mn(F ). We define

detA =
∑

σ∈Sn

ε(σ)Aσ(1)1 . . . Aσ(n)n

Example 5.1
Let n = 2. Then,

A =
(
a11 a12
a21 a22

)
=⇒ detA = a11a22 − a12a21
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Lemma 5.3
If A = (aij) is an upper (or lower) triangular matrix (with zeroes on the diagonal),
then detA = 0.

Proof. Let (aij) = 0 for i > j. Then

detA =
∑

σ∈Sn

ε(σ)aσ(1)1 . . . aσ(n)n

For the summand to be nonzero, σ(j) ≤ j for all j. Thus,

detA = a11 . . . ann = 0

Exercise 5.1. Show similarly det

λ1 ∗
. . .

0 λn

 =
∏n

i=1 λi.

Lemma 5.4
Let A ∈ Mn(F ). Then, detA = detA⊺.

Proof.

detA =
∑

σ∈Sn

ε(σ)aσ(1)1 . . . aσ(n)n

=
∑

σ∈Sn

ε(σ)
∏

i

aiσ−1(i) as σ a bijectiona

=
∑

σ−1∈Sn

ε(σ−1)
∏

i

aiσ−1(i)

=
∑

σ∈Sn

ε(σ)
∏

i

aiσ(i) as σ a bijection

= detA⊺

aSee V&M notes for better explanation.

§5.4 Volume forms

Why do we use this formula for detA?
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Definition 5.4 (Volume Form)
A volume form d on Fn is a function d : Fn × · · · × Fn︸ ︷︷ ︸

n times

→ F satisfying

1. d is multilinear: for all i ∈ {1, . . . , n} and for all v1, . . . , vi−1, vi+1, . . . , vn ∈ Fn,
the map from Fn to F defined by

v 7→ (v1, . . . , vi−1, v, vi+1, . . . , vn)

is linear. In other words, this map is an element of (Fn)⋆.a

2. d is alternating: if vi = vj for some i 6= j, d = 0.

So an alternating multilinear form is a volume form.
aLinear with respect to all n coordinates.

Aim: We want to show that there is in fact only ONE (up to a multiplicative constant)
volume form on Fn × · · · × Fn which is given by the determinant.

Lemma 5.5
The map (Fn)n → F defined by (A(1), . . . , A(n)) 7→ detA is a volume form. This
map is the determinant of A, but thought of as acting on the column vectors of A.

Proof. We first show that this map is multilinear. Fix σ ∈ Sn, and consider∏n
i=1 aσ(i)i. This product contains exactly one term in each column of A. Thus, the

map (A(1), . . . , A(n)) 7→
∏n

i=1 aσ(i)i is multilinear. This then clearly implies that the
determinant, a sum of such multilinear maps, is itself multilinear.

Now, we show that the determinant is alternating. Let k 6= ℓ, and A(k) = A(ℓ). I
want to show detA = 0.
Let τ = (k ℓ) be the transposition exchanging k and ℓ. Then, for all i, j ∈ {1, . . . , n},
aij = aiτ(j). We can decompose permutations into two disjoint sets: Sn = An∪τAn

a,
where An is the alternating group of order n.

detA =
∑

σ∈Sn

ε(σ)
n∏

i=1
aiσ(i)

=
∑

σ∈An

ε(σ)
n∏

i=1
aiσ(i) +

∑
σ∈τAn

ε(σ)
n∏

i=1
aiσ(i)

=
∑

σ∈An

n∏
i=1

aiσ(i) −
∑

σ∈An

n∏
i=1

aiτσ(i)
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=
∑

σ∈An

n∏
i=1

aiσ(i) −
∑

σ∈An

n∏
i=1

aiσ(i) as aij = aiτ(j)

= 0

So the determinant is alternating, and hence a volume form.
aAs τ bijective and ε(τ) = −1

Lemma 5.6
Let d be a volume form. Then, swapping two entries changes the sign.

Proof. Take the sum of these two results:

d(v1, . . . , vi, . . . , vj , . . . , vn) + d(v1, . . . , vj , . . . , vi, . . . , vn)
= d(v1, . . . , vi, . . . , vj , . . . , vn)
+ d(v1, . . . , vj , . . . , vi, . . . , vn)
+ d(v1, . . . , vi, . . . , vi, . . . , vn)

0

+ d(v1, . . . , vj , . . . , vj , vn)
0

= 2d(v1, . . . , vi + vj , . . . , vi + vj , . . . , vn)
= 0

as required.

Corollary 5.2
If σ ∈ Sn and d is a volume form, d(vσ(1), . . . , vσ(n)) = ε(σ)d(v1, . . . , vn).

Proof. We can decompose σ as a product of transpositions∏nσ
i=1 ei.

Theorem 5.2
Let d be a volume form on Fn. Let A be a matrix whose columns are A(i). Then

d(A(1), . . . , A(n)) = detA · d(e1, . . . , en)

So there is a unique volume form up to a constant multiple.
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Proof.

d(A(1), . . . , A(n)) = d

(
n∑

i=1
ai1ei, A

(2), . . . , A(n)
)

Since d is multilinear,

d(A(1), . . . , A(n)) =
n∑

i=1
ai1d

(
ei, A

(2), . . . , A(n)
)

Inductively on all columns,

d(A(1), . . . , A(n)) =
n∑

i=1

n∑
j=1

ai1aj2d
(
ei, ej , A

(3), . . . , A(n)
)

...

=
∑

1≤i1≤n
...

1≤in≤n

n∏
k=1

aikkd(ei1 , . . . ein)

Since d is alternating, we know that for d(ei1 , . . . , ein) to be nonzero, the ik must be
different, so this corresponds to a permutation σ ∈ Sn.

d(A(1), . . . , A(n)) =
∑

σ∈Sn

n∏
k=1

aσ(k)kε(σ)d(e1, . . . , en)

which is exactly the determinant up to a constant multiple.

Corollary 5.3
We can then see that detA is the only volume form such that d(e1, . . . , en) = 1.

§5.5 Multiplicative property of determinant

Lemma 5.7
Let A,B ∈ Mn(F ). Then det(AB) = det(A) det(B).

Proof. Given A, we define the volume form dA : (Fn)n → F by

dA(v1, . . . , vn) 7→ det(Av1, . . . , Avn)
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vi 7→ Avi is linear, and the determinant is multilinear, so dA is multilinear. If i 6= j
and vi = vj , then det(. . . , Avi, . . . , Avj , . . .) = 0 so dA is alternating. Hence dA is a
volume form.

Hence there exists a constant CA such that dA(v1, . . . , vn) = CA det(v1, . . . , vn). We
can compute CA by considering the basis vectors; Aei = Ai where Ai is the ith
column vector of A. Then,

CA = dA(e1, . . . , en) = det(Ae1, . . . , Aen) = detA

Hence,

det(AB) = dA(B1, . . . , Bn) = detAdetB

§5.6 Singular and non-singular matrices

Definition 5.5 (Singular)
Let A ∈ Mn(F ). We say that

1. A is singular if detA = 0;

2. A is non-singular if detA 6= 0.

Lemma 5.8
If A is invertible, it is non-singular.

Proof. If A is invertible, there exists A−1.

det
(
AA−1

)
= det I = 1

Thus detAdetA−1 = 1 and hence neither of these determinants can be zero.

Remark 29. We have proved that detA−1 = 1
det A

Theorem 5.3
Let A ∈ Mn(F ). The following are equivalent.

1. A is invertible;

2. A is non-singular;
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3. r(A) = n.

Proof. Wehave just shown that (i) implies (ii). We have also shown that (i) and (iii)
are equivalent by the rank-nullity theorem. So it suffices to show that (ii) implies
(iii).

Suppose r(A) < n. Thenwewill showA is singular. Wehavedim span(A1, . . . , An) <
n. Therefore, since there are n vectors, (A1, . . . , An) is not free. So there exist scalars
λi not all zero such that∑i λiAi = 0. Choose j such that λj 6= 0. Then,

Aj = − 1
λj

∑
i 6=j

λiAi

So we can compute the determinant of A by

detA = det

A1, . . . ,−
1
λj

∑
i 6=j

λiAi, . . . , An


Since the determinant is alternating and linear in the jth entry, its value is zero. So
A is singular as required.

Remark 30. The above theorem gives necessary and sufficient conditions for invertibility
of a set of n linear equations with n unknowns. There exists a unique solution X ∈ Fn

to AX = Y iff A is invertible.

§5.7 Determinants of linear maps

Lemma 5.9
Similar matrices have the same determinant.

Proof.

det
(
P−1AP

)
= det

(
P−1

)
detAdetP = detAdet

(
P−1P

)
= detAa

aP invertible.

Definition 5.6
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If α is an endomorphism, then we define

detα = det[α]B,B

where B is any basis of the vector space. This is well-defined, since this value does
not depend on the choice of basis.

Theorem 5.4
det : L(V, V ) → F satisfies the following properties.

1. det I = 1;

2. det(αβ) = detα detβ;

3. detα 6= 0 if and only if α is invertible, and in this case, det
(
α−1)detα = 1.

This is simply a reformulation of the previous theorem for matrices.

Proof. The proof is simple, and relies on the invariance of the determinant under a
change of basis. Simply pick a basis, and re-express in terms of [α]B, [β]B .

§5.8 Determinant of block-triangular matrices

Lemma 5.10
Let A ∈ Mk(F ), B ∈ Mℓ(F ), C ∈ Mk,ℓ(F ). Consider the matrix

M =
(
A C
0 B

)

Then detM = detAdetB.

Proof. Let n = k + ℓ, soM ∈ Mn(F ). LetM = (mij). We must compute

detM =
∑

σ∈Sn

ε(σ)
n∏

i=1
mσ(i)i

Observe thatmσ(i)i = 0 if i ≤ k and σ(i) > k. Then, we need only sum over σ ∈ Sn

such that for all j ≤ k, we have σ(j) ≤ k. Thus, for all j ∈ {k + 1, . . . , n}, we have
σ(j) ∈ {k + 1, . . . , n}. We can then uniquely decompose σ into two permutations
σ = σ1σ2, where σ1 is restricted to {1, . . . , k} and σ2 is restricted to {k + 1, . . . , n}.
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Hence,

detM =
∑

σ1∈Sk

∑
σ2∈Sn−k

ε(σ)
n∏

i=1
mσ(i)i

=
∑

σ1∈Sk

∑
σ2∈Sn−k

ε(σ1)ε(σ2)
k∏

i=1
mσ1(i)i

n∏
i=k+1

mσ2(i)i

=
∑

σ1∈Sk

∑
σ2∈Sn−k

ε(σ1)ε(σ2)
k∏

i=1
Aσ1(i)i

a
n∏

i=k+1
Bσ2(i)i

=

 ∑
σ1∈Sk

ε(σ1)
k∏

i=1
Aσ(i)i

 ∑
σ2∈Sn−k

ε(σ2)
n∏

i=k+1
Bσ(i)i


= detAdetB

ai, σ1(i) ∈ [1, k] so mσ1(i)i = Aσ1(i)i.

Corollary 5.4
We need not restrict ourselves to just two blocks, since we can apply the above
lemma inductively. In particular, this implies that an upper-triangular matrix with
diagonal elements λi has determinant∏i λi.
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§6 Adjugate Matrices

§6.1 Column and row expansions

Let A ∈ Mn(F ) with column vectors A(i). We know that

det
(
A(1), . . . , A(j), . . . , A(k), . . . , A(n)

)
= − det

(
A(1), . . . , A(k), . . . , A(j), . . . , A(n)

)
Using the fact that detA = detA⊺ we can similarly see that swapping two rows will
invert the sign of the determinant.

Remark 31. We could have proven all of the properties of the determinant above by using
the decomposition of A into elementary matrices.

Definition 6.1 (Minor)
Let A ∈ Mn(F ). Let i, j ∈ {1, . . . , n}. We define the minor A

îj
∈ Mn−1(F ) to be the

matrix obtained by removing the ith row and the jth column from A.

Example 6.1

A =

 1 2 −7
2 1 0

−3 6 1


A3̂2 =

(
1 −7
2 0

)

Lemma 6.1 (Expansion of the determinant)
Let A ∈ Mn(F ).

1. Let j ∈ {1, . . . , n}. The determinant of A is given by the column expansion with
respect to the jth column:

detA =
n∑

i=1
(−1)i+jaij detA

îj

2. Let i ∈ {1, . . . , n}. The same determinant is also given by the row expansion
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with respect to the ith row:

detA =
n∑

j=1
(−1)i+jaij detA

îj

This is a process of reducing the computation of n×n determinants to (n− 1) × (n− 1)
determinants. A powerful tool to compute determinants.

Example 6.2

Proof. Wewill prove case (i), the column expansion with respect to the jth column.
Then (ii) will follow from the transpose of the matrix.

Let j ∈ {1, . . . , n}. We can write A(j) =
∑n

i=1 aijei where the ei are the canonical
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basis and A = (aij)1≤i,j≤n.

detA = det
(
A(1), . . . , Aj−1,

n∑
i=1

aijei, Aj+1, . . . , A
(n)
)

=
n∑

i=1
aij det

(
A(1), . . . , ei, . . . , A

(n)
)

Then, by swapping rows and columns,

=
n∑

i=1
aij(−1)j−1 det

(
ei, A

(1), . . . , A(n)
)

Swapping the ith row with the first:

=
n∑

i=1
aij(−1)j−1(−1)i−1 det


1 ai1 . . . ai,j−1 ai,j+1 . . . ain

0
...
0

A
îj



This has brought the matrix into block form, where there is an element of value 1 in
the top left, and the matrix A

îj
in the bottom right. The bottom left block is entirely

zeroes. Hence,

detA =
n∑

i=1
(−1)i+jaij detA

îj

as required.

Remark 32. We have proven that

det
(
A(1), . . . , Aj−1, ei, Aj+1, . . . , A

(n)
)

= (−1)i+j detA
îj

§6.2 Adjugates

Definition 6.2 (Adjugate matrix)
Let A ∈ Mn(F ). The adjugate matrix of A, denoted adjA, is the n× nmatrix given
by

(adjA)ij = (−1)i+j detA
ĵi

61



Hence,

det
(
A(1), . . . , A(j−1), ei, A

(j+1), . . . , A(n)
)

= (adjA)ji

Theorem 6.1
Let A ∈ Mn(F ). Then

(adjA)A = (detA)I

In particular, when A is invertible,

A−1 = adjA
detA

Proof. We have

detA =
n∑

i=1
(−1)i+jaij detA

îj

Hence,

detA =
n∑

i=1
(adjA)jiaij = ((adjA)A)jj

So the diagonal terms match. Off the diagonal,

0 = det

A(1), . . . , A(k)︸︷︷︸
jth position

, . . . , A(k), . . . , A(n)


By linearity,

0 = det

A(1), . . . ,
n∑

i=1
aikei︸ ︷︷ ︸

jth position

, . . . , A(k), . . . , A(n)


=

n∑
i=1

aik det

A(1), . . . , ei︸︷︷︸
jth position

, . . . , A(k), . . . , A(n)


=

n∑
i=1

aik(adjA)ji
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= ((adjA)A)jk

§6.3 Cramer’s rule

Proposition 6.1
Let A ∈ Mn(F ) be invertible. Let b ∈ Fn. Then the unique solution to Ax = b is
given by

xi = 1
detA

det
(
A

îb

)
where A

îb
is obtained by replacing the ith column of A by b.

This is an algorithm to compute x, avoiding the computation of A−1.

Proof. Let A be invertible. Then there exists a unique x ∈ Fn such that Ax = b.
Then, since the determinant is alternating,

det
(
A

îb

)
= det

(
A(1), . . . , A(i−1), b, A(i+1), . . . , A(n)

)
= det

(
A(1), . . . , A(i−1), Ax,A(i+1), . . . , A(n)

)
= det

A(1), . . . , A(i−1),
n∑

j=1
xjA

(j), A(i+1), . . . , A(n)


As det linear we can bring out the xjs and then as its alternating,

= xi det
(
A(1), . . . , A(i−1), A(i), A(i+1), . . . , A(n)

)
= xi detA

So the formula works.
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§7 Eigenvectors and Eigenvalues

§7.1 Eigenvalues

Let V be an F -vector space. Let dimF V = n < ∞, and let α be an endomorphism of
V .

Question
Can we find a basis B of V such that, in this basis, [α]B ≡ [α]B,B has a simple (e.g.
diagonal, triangular) form?

Recall that if B′ is another basis and P is the change of basis matrix, [α]B′ = P−1[α]BP .
Equivalently, given a square matrix A ∈ Mn(F ) we want to conjugate it by a matrix P
such that the result is ‘simpler’.

Definition 7.1 (Diagonalisable)
Let α ∈ L(V ) be an endomorphism. We say that α is diagonalisable if there exists
a basis B of V such that the matrix [α]B is diagonal.

Definition 7.2 (Triangulable)
We say thatα is triangulable if there exists a basisB of V such that [α]B is triangular.

Remark 33. We can express this equivalently in terms of conjugation of matrices.

Definition 7.3 (Eigenvalue, Eigenvector and Eigenspace)
A scalar λ ∈ F is an eigenvalue of an endomorphism α if and only if there exists
a vector v ∈ V \ {0} such that α(v) = λv. Such a vector is an eigenvector with
eigenvalue λ.
Vλ = {v ∈ V : α(v) = λv} ≤ V is the eigenspace associated to λ.

Lemma 7.1
Let α ∈ L(V ) and λ ∈ F .
λ is an eigenvalue iff det(α− λI) = 0.

Proof. If λ is an eigenvalue, there exists a nonzero vector v such that α(v) = λv, so
(α − λI)(v) = 0. So the kernel is non-trivial. So α − λI is not injective, so it is not
surjective by the rank-nullity theorem. Hence this matrix is not invertible, so it has
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zero determinant.

Remark 34. If α(vj) = λjvj (vj 6= 0) for j ∈ {1, . . . ,m}, we can complete the family vj

into a basis (v1, . . . , vn) of V . Then in this basis, the firstm columns of the matrix α has
diagonal entries λj .

§7.2 Elementary facts about polynomials

Recall the following facts about polynomials on a field F , for instance

f(t) = ant
n + · · · + a1t+ a0, ai ∈ F

We say that the degree of f , written deg f is n. The degree of f + g is at most the max-
imum degree of f and g. deg(fg) = deg f + deg g.
Let F [t] be the vector space of polynomials with coefficients in F .
λ is a root of f(t) ⇐⇒ f(λ = 0).

Lemma 7.2
If λ is a root of f then (t− λ) divides F . I.e. f(t) = (t− λ)g(t) where g(t) ∈ F [t].

Proof.

f(t) = ant
n + · · · + a1t+ a0

Hence,

f(λ) = anλ
n + · · · + a1λ+ a0 = 0

which implies that

f(t) = f(t) − f(λ) = an(tn − λn) + · · · + a1(t− λ)

But note that, for all n,

tn − λn = (t− λ)(tn−1 + λtn−2 + · · · + λn−2t+ λn−1)

Remark 35. We say that λ is a root of multiplicity k if (t − λ)k divides f but (t − λ)k+1

does not.

Corollary 7.1
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A nonzero polynomial of degree n has at most n roots, counted with multiplicity.

Proof. Induction on the degree. Left as an exercise.

Corollary 7.2
If f1, f2 are two polynomials of degree less than n such that f1(ti) = f2(ti) for i ∈
{1, . . . , n} and ti distinct, then f1 ≡ f2.

Proof. f1 − f2 has degree less than n, but has n roots. Hence it is zero.

Theorem 7.1
Any polynomial f ∈ C[t] of positive degree has a complex root. When countedwith
multiplicity, f has a number of roots equal to its degree.

Corollary 7.3
Any polynomial f ∈ C[t] can be factorised into an amount of linear factors equal to
its degree. f(t) = c

∏r
i=1(t− λi)αi , with c ∈ C, λi ∈ C, αi ∈ N.

Proved in Complex Analysis.

§7.3 Characteristic polynomials

Definition 7.4 (Characteristic polynomials)
Let α be an endomorphism. The characteristic polynomial of α is

χα(t) = det(Aa − tI)
aA = [α]B for any basis B, we will see it’s well defined below.

Remark 36. 1. χα is a polynomial because the determinant is defined as a polynomial
in the terms of the matrix.

2. Note further that conjugate matrices have the same characteristic polynomial, so
the above definition is well defined in any basis. Indeed, det

(
P−1AP − λI

)
=

det
(
P−1(A− λI)P

)
= det(A− λI).

Theorem 7.2
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Let α ∈ L(V ). α is triangulable iff χα can be written as a product of linear factors
over F . I.e. χα(t) = c

∏n
i=1(t− λi)a

aλi need not be distinct.

Corollary 7.4
In particular, all complex matrices are triangulable.

Proof. ( =⇒ ): Suppose α is triangulable. Then for a basis B, [α]B is triangulable
with diagonal entries ai. Then

χα(t) = (a1 − t)(a2 − t) · · · (an − t)

(⇐=): We argue by induction on n = dimV . True for n = 1.
By assumption, let χα(t) be the characteristic polynomial of α with a root λ. Then,
χα(λ) = 0 implies λ is an eigenvalue. Let Vλ be the corresponding eigenspace. Let
(v1, . . . , vk) be the basis of this eigenspace, completed to a basis (v1, . . . , vn) of V .
LetW = span {vk+1, . . . , vn}, and then V = Vλ ⊕W . Then

[α]B =
(
λI ⋆
0 C

)

where ⋆ is arbitrary, and C is a block of size (n− k) × (n− k).
Thenα induces an endomorphismα : V/Vλ → V/Vλ withC = [α]B andB = (vk+1+
Vλ, . . . , vn + Vλ).

Then (block product)

det([α]B − tI) = det
(

(λ− t)I ⋆
0 C − tI

)
= (λ− t)k det(C − tI)

We know det([α]B − tI) = c
n∏

i=1
(t− ai)

=⇒ det(C − tI)a = c
n∏

k+1
(t− ãi)

By induction on the dimension, we can find a basis (wk+1, . . . , wn) ofW for which
[C]W has a triangular form. Then the basis (v1, . . . , vk, wk+1, . . . , wn) is a basis for
which α is triangular.

aAs det(C − tI) is a polynomial
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Lemma 7.3
Let n = dimV , and V be a vector space over R or C. Let α be an endomorphism on
V . Then

χα(t) = (−1)ntn + cn−1t
n−1 + · · · + c0

with

c0 = detA; cn−1 = (−1)n−1 trA

Proof.

χα(t) = det(α− tI) =⇒ χα(0) = det(α) = c0.

Further, for R,Ca we know that α is triangulable over C. Hence χα(t) is the determ-
inant of a triangular matrix;

χα(t) =
n∏

i=1
(ai − t)

= (−1)ntn + cn−1t
n−1 + · · · + c0

Hence

cn−1 = (−1)n−1
n∑
i

ai

tr A

Since the trace is invariant under a change of basis, this is exactly the trace as re-
quired.

aFor R we can think of A as having complex entries as well.

§7.4 Polynomials for matrices and endomorphisms

Let p(t) be a polynomial over F . We will write

p(t) = ant
n + · · · + a0, ai ∈ F

For a matrix A ∈ Mn(F ) (∀ k Ak ∈ Mn(f)), we define

p(A) = anA
n + · · · + a0 ∈ Mn(F )

For an endomorphism α ∈ L(V ),

p(α) = anα
n + · · · + a0I ∈ L(V ); αk ≡ α ◦ · · · ◦ α︸ ︷︷ ︸

k times
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§7.5 Sharp criterion of diagonalisability

Theorem 7.3
Let V be a vector space over F of finite dimension n. Let α be an endomorphism of
V .
Then α is diagonalisable if and only if there exists a polynomial pwhich is a product
of distinct linear factors, such that p(α) = 0. In other words, there exist distinct
λ1, . . . , λk such that

p(t) =
n∏

i=1
(t− λi) =⇒ p(α) = 0

Proof. ( =⇒ ) Suppose α is diagonalisable. Let λ1, . . . , λk be the k ≤ n distinct
eigenvalues. Let

p(t) =
k∏

i=1
(t− λi)

LetB be a basis of V made of the eigenvectors of α (it is precisely the basis in which
[α]B is diagonal).
Let v ∈ B. Then α(v) = λiv for some i. Then, since the terms in the following
product commute,

(α− λiI)(v) = 0 =⇒ p(α)(v) =

 k∏
j=1

(α− λjI)

 (v)a = 0

So for all basis vectors, p(α)(v) = 0. As B a basis, by linearity, p(α)(v) = 0 ∀ v ∈ V
so p(α) = 0.

(⇐=) (Kernel lemma, Bezout’s theorem for prime polynomials)
Conversely, suppose that p(α) = 0 for some polynomial p(t) =

∏k
i=1(t − λi) with

distinct λi. Let Vλi
= ker(α− λiI). We claim that

V =
k⊕

i=1
Vλi

Consider the polynomials

qj(t) =
k∏

i=1,i 6=j

t− λi

λj − λi
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These polynomials evaluate to one at λj and zero at λi for i 6= j. Hence qj(λi) = δij .
We now define the polynomial

q = q1 + · · · + qk

We know deg qj ≤ k − 1 so deg q ≤ k − 1. Note, q(λi) = 1 for all i ∈ {1, . . . , k}.
The only polynomial that evaluates to one at k points with degree at most (k− 1) is
exactly given by q(t) = 1.
Consider the endomorphism

πj = qj(α) ∈ L(V )

These are called the ‘projection operators’. By construction,

k∑
j=1

πj =
k∑

j=1
qj(α) = I

So the sum of the πj is the identity. Hence, for all v ∈ V ,

I(v) = v =
k∑

j=1
πj(v) =

k∑
j=1

qj(α)(v)

So we can decompose any vector as a sum of its projections πj(v). Observe by defin-
ition of qj and p,

(α− λjI)qj(α)(v) = 1∏
i 6=j(λj − λi)

(α− λjI)

∏
i 6=j

(t− λi)

 (α)

= 1∏
i 6=j(λj − λi)

k∏
i=1

(α− λiI)(v)

= 1∏
i 6=j(λj − λi)

p(α)(v)

By assumption, this is zero. For all v, we have

(α− λjI)πj(v) = 0 =⇒ πj(v) ∈ ker(α− λjI) = Vλj

(πj is a projector on Vλj
). We have then proven that, for all v ∈ V ,

v = q(v) =
k∑

j=1
πj(v)︸ ︷︷ ︸
∈Vλj
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Hence,

V =
k∑

j=1
Vλj

It remains to show that the sum is direct. Indeed, let

v ∈ Vλj
∩

∑
i 6=j

Vλi


We must show v = 0. v ∈ Vλj

so applying πj ,

πj(v) = qj(α)(v) =
∏
i 6=j

(α− λiI)(v)
λj − λi

Since α(v) = λjv,

πj(v) =
∏
i 6=j

(λj − λi)v
λj − λi

= v

So πj |Vλj
= Id. However, we also know v ∈

∑
i 6=j Vλi

. So we can write v =
∑

i 6=j wi

for w ∈ Vλi
. Thus,

πj(wi) =
∏

m6=j

(α− λmI)(wi)
λm − λj

Since α(wi) = λiwi, one of the factors will vanish, hence

πj(wi) = 0

So πj |Vλi
= 0 for i 6= j and

v =
∑
i 6=j

wi =⇒ πj(v) =
∑
i 6=j

πj(wi) = 0

But v = πj(v) hence v = 0.

So the sum is direct. Hence,B = (B1, . . . , Bk) is a basis of V , where theBi are bases
of Vλi

. Then [α]B is diagonal.

Also, we know πj |Vλj
= Id and πj |Vλi

= 0 for i 6= j so πj is the projector onto
Vλj

.
aOne of the js is i, so as they commute product is 0.
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Remark 37. We have shown further that if λ1, . . . , λk are distinct eigenvalues of α, then
k∑

i=1
Vλi

=
k⊕

i=1
Vλi

(andwe know the projectors). Therefore, the onlyway that diagonalisation fails is when
this sum is not direct, so

k∑
i=1

Vλi
< V

Example 7.1
Let F = C. LetA ∈ Mn(F ) such thatA has finite order; there existsm ∈ N such that
Am = I . Then A is diagonalisable. This is because

tm − 1 = p(t) =
m∏

j=1
(t− ξj

m); ξm = e2πi/m

and p(A) = 0.

§7.6 Simultaneous diagonalisation

Theorem 7.4
Let V be a finite dimensional vector space. Let α, β be endomorphisms of V which
are diagonalisable.
Then α, β are simultaneously diagonalisable (there exists a basis B of V such that
[α]B, [β]B are diagonal) if and only if α and β commute.

Proof. ( =⇒ ) ∃ B basis of V s.t. [α]B , [β]B are diagonal. Two diagonal matrices
commute, i.e. [α]B[β]B = [β]B[α]B . If such a basis exists, αβ = βα in this basis. So
this holds in any basis.

(⇐=) Conversely, suppose α, β are diagonalisable and αβ = βα. We have

V =
k⊕

i=1
Vλi

where λi, . . . , λk are the k distinct eigenvalues of α.

Claim 7.1
Vλi

stable by β, i.e. β
(
Vλj

)
≤ Vλj

.
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Proof. Indeed, for v ∈ Vλj
,

αβ(v) = βα(v) = β(λjv) = λjβ(v) =⇒ α(β(v)) = λjβ(v)

Hence, β(v) ∈ Vλj
.

By assumption, β is diagonalisable. Hence, there exists a polynomial pwith distinct
linear factors such that p(β) = 0. Now, β

(
Vλj

)
≤ Vλj

so we can consider β|Vλj
. This

is an endomorphism of Vλj
. We can see that

p

β∣∣∣∣
Vλj

 = 0

Hence, β|Vλj
is diagonalisable. Let Bi be the basis of Vλi

in which β|Vλj
is diagonal.

Since V =
⊕
Vλi

, B = (B1, . . . , Bk) is a basis of V . Then the matrices of α and β in
V are diagonal.

§7.7 Minimal polynomials of an endomorphism

Recall from IB GRM the Euclidean algorithm for dividing polynomials. Given a, b poly-
nomials over F with b nonzero, there exist polynomials q, r over F with deg r < deg b
and a = qb+ r.

Definition 7.5 (Minimal polynomial)
Let V be a finite dimensional F -vector space. Let α be an endomorphism on V .
The minimal polynomialmα of α is the (unique up to a constant) nonzero polyno-
mial with smallest degree such thatmα(α) = 0.

Remark 38. If dimV = n < ∞, then dimL(V ) = n2. In particular, the family{
I, α, . . . , αn2

}
cannot be free since it has n2 + 1 entries. So ∃ (an2 , . . . , a1, a0) 6= 0 s.t.

an2αn2 + · · · = a1α + a0 = 0. So ∃ p ∈ F [t] s.t. p 6= 0 and p(α) = 0. Hence, a minimal
polynomial always exists.

Lemma 7.4
Let α ∈ L(V ) and p ∈ F [t] be a polynomial.
Then p(α) = 0 if and only ifmα is a factor of p. In particular,mα is well-defined and
unique up to a constant multiple.
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Proof. Let p ∈ F [t] such that p(α) = 0. Ifmα(α) = 0 and degmα < deg p, we can per-
form the division p = mαq + r for deg r < degmα. Then p(α) = mα(α)q(α) + r(α).
Butmα(α) = 0 so r(α) = 0.
But deg r < degmα and mα is the smallest degree polynomial which evaluates to
zero for α, so r ≡ 0 so p = mαq. d In particular, ifm1,m2 are both minimal polyno-
mials that evaluate to zero for α, we havem1 dividesm2 andm2 dividesm1. Hence
they are equivalent up to a constant.

Example 7.2
Let V = F 2 and

A =
(

1 0
0 1

)
; B =

(
1 1
0 1

)

We can check p(t) = (t−1)2 gives p(A) = p(B) = 0. So theminimal polynomial ofA
orBmust be either (t−1) or (t−1)2 (as themin poly divides any poly s.t. p(α) = 0).
For A, we can find the minimal polynomial is (t− 1), and for B we require (t− 1)2.
A is diagonalisable as it is a product of distinct linear factors. So B is not diagonal-
isable, since its minimal polynomial is not a product of distinct linear factors.

§7.8 Cayley-Hamilton theorem

Theorem 7.5 (Cayley-Hamitlon)
Let V be a finite dimensional F -vector space. Let α ∈ L(V ) with characteristic
polynomial χα(t) = det(α− tI). Then χα(α) = 0.

Corollary 7.5
mα | χα.

Two proofs will provided; one more physical and based on F = C and one more algeb-
raic.

Proof. Let F = C. Let B = {v1, . . . , vn} be a basis of V such that [α]B is triangular.
Note, if the diagonal entries in this basis are ai,

χα(t) =
n∏

i=1
(ai − t) =⇒ χα(α) = (α− a1I) . . . (α− anI)

We want to show that this expansion evaluates to zero. Let Uj = span {v1, . . . , vj}.
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Let v ∈ V = Un. We want to compute χα(α)(v). Note, by construction of the
triangular matrix.

χα(α)(v) = (α− a1I) . . . (α− anI)(v)︸ ︷︷ ︸
∈Un−1

= (α− a1I) . . . (α− an−1I)(α− anI)(v)︸ ︷︷ ︸
∈Un−2

= (α− a1I) . . . (α− anI)(v)︸ ︷︷ ︸
∈U1

= 0

Hence χα(α) = 0.

The following proof works for any field where we can equate coefficients, but is much
less intuitive.

Proof. We will write

det(tI − α) = (−1)nχα(t) = tn + an−1t
n−1 + · · · + a0

For any matrixB, we have provenB adjB = (detB)I . We apply this relation to the
matrix B = tI −A. We can check that

adjB = adj(tI −A) = Bn−1t
n−1 + · · · +B1t+B0

since adjugate matrices are degree (n− 1) polynomials for each element. Then, by
applying B adjB = (detB)I ,

(tI −A)[Bn−1t
n−1 + · · · +B1t+B0] = (detB)I = (tn + · · · + a0)I

Since this is true for all t, we can equate coefficients. This gives

tn : I = Bn−1

tn−1 : an−1I = Bn−2 −ABn−1
...

...
t0 : a0I = −AB1

Then, substituting A for t in each relation will give, for example, AnI = AnBn−1.
Computing the sum of all of these identities, we recover the original polynomial in
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terms ofA instead of in terms of t. Many terms will cancel since the sum telescopes,
yielding

An + an−1A
n−1 + · · · + a0I = 0

§7.9 Algebraic and geometric multiplicity

Definition 7.6 (Algebraic/ geometric multiplicity.)
Let V be a finite dimensional F -vector space. Let α ∈ L(V ) and let λ be an eigen-
value of α.
Then

χα(t) = (t− λ)aλq(t)

where q(t) is a non zero polynomial over F such that (t−λ) does not divide q. aλ is
known as the algebraic multiplicity of the eigenvalue λ. We define the geometric
multiplicity gλ of λ to be the dimension of the eigenspace associated with λ, so
gλ = dim ker(α− λI).

Remark 39. λ an eigenvalue iff α− λI singular iff det(α− λI) = χα(λ) = 0.

Lemma 7.5
If λ is an eigenvalue of α ∈ L(V ), then 1 ≤ gλ ≤ aλ.

Proof. We have gλ = dim ker(α − λI). There exists a nontrivial vector v ∈ V such
that v ∈ ker(α− λI) since λ is an eigenvalue. Hence gλ ≥ 1.
We will show that gλ ≤ aλ. Indeed, let v1, . . . , vgλ

be a basis of Vλ ≡ ker(α − λI).
We complete this into a basis B ≡ (v1, . . . , vgλ

, vgλ+1, . . . , vn) of V . Then note that

[α]B =
(
λIgλ

⋆
0 A1

)

for some matrix A1. Now,

det(α− tI) = det
(

(λ− t)Igλ
⋆

0 A1 − tI

)

By the formula for determinants of block matrices with a zero block on the off di-

76



agonal,

det(α− tI) = (λ− t)gλ det(A1 − tI)

Hence gλ ≤ aλ since the determinant is a polynomial that could have more factors
of the same form.

Lemma 7.6
Let V be a finite dimensional F -vector space. Let α ∈ L(V ) and let λ be an eigen-
value of α. Let cλ be the multiplicity of λ as a root of the minimal polynomial of α.
Then 1 ≤ cλ ≤ aλ.

Proof. By the Cayley-Hamilton theorem, χα(α) = 0. Sincemα is linear,mα divides
χα. Hence cλ ≤ aλ.
Nowwe show cλ ≥ 1. Indeed, λ is an eigenvalue hence there exists a nonzero v ∈ V
such that α(v) = λv. For such an eigenvector, αP (v) = λP v for P ∈ N. Hence for
p ∈ F [t], p(α)(v) = [p(λ)]v. Hencemα(α)(v) = [mα(λ)](v). Since the left hand side
is zero,mα(λ) = 0. So cλ ≥ 1.

Example 7.3
Let

A =

1 0 −2
0 1 1
0 0 2


The minimal polynomial can be computed by considering the characteristic polyno-
mial

χA(t) = (t− 1)2(t− 2)

So the minimal polynomial is either (t − 1)2(t − 2) or (t − 1)(t − 2). We check
(t − 1)(t − 2). (A − I)(A − 2I) can be found to be zero. So mA(t) = (t − 1)(t − 2).
Since this is a product of distinct linear factors, A is diagonalisable.

Example 7.4
Let A be a Jordan block of size n ≥ 2. Then gλ = 1, aλ = n, and cλ = n.

§7.10 Characterisation of diagonalisable complex endomorphisms
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Lemma 7.7 (Characterisation of diagonalisable endomorphisms over F = C)
LetF = C. Let V be a finite-dimensionalC-vector space. Letα be an endomorphism
of V . Then the following are equivalent.

1. α is diagonalisable;

2. for all λ eigenvalues of α, we have aλ = gλ;

3. for all λ eigenvalues of α, cλ = 1.

Proof. First, the fact that (i) is true if and only if (iii) is true has already been proven.
Now let us show that (i) is equivalent to (ii).

Let λ1, . . . , λk be the distinct eigenvalues of α. We have already found that α is
diagonalisable if and only if V =

⊕
Vλi

. The sum was found to be always direct,
regardless of diagonalisability. We will compute the dimension of V in two ways;

n = dimV = degχα; n = dimV =
k∑

i=1
aλi

since χα is a product of (t− λi) factors as F = C. Since the sum is direct,

dim
(

k⊕
i=1

Vλi

)
=

k∑
i=1

gλi

α is diagonalisable if and only if the dimensions are equal, so

k∑
i=1

gλi
=

k∑
i=1

aλi

We have proven that for all eigenvalues λi, gλi
≤ aλi

. Hence, ∑k
i=1 gλi

=
∑k

i=1 aλi

holds if and only if gλi
= aλi

for all i.
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§8 Jordan Normal Form

For this section, let F = C.

§8.1 Definition

Definition 8.1 (Jordan Normal Form)
Let A ∈ Mn(C). We say that A is in Jordan normal form (JNF) if it is a block
diagonal matrix, where each block is of the form

Jni(λ) =


λ 1 0 · · · 0
0 λ 1 · · · 0
0 0 λ · · · 0
...

...
... . . . ...

0 0 0 · · · λ


We say that Jni(λ) ∈ Mni(C) are Jordan blocks. The λi ∈ C need not be distinct.

Remark 40. In three dimensions,

A =

λ 0 0
0 λ 0
0 0 λ


is in Jordan normal form, with three one-dimensional Jordan blocks with the same λ
value.

§8.2 Similarity to Jordan normal form

Theorem 8.1
Any complexmatrixA ∈ Mn(C) is similar to a matrix in Jordan normal form, which
is unique up to reordering the Jordan blocks.

The proof is non-examinable. This follows from IB Groups, Rings and Modules.

Example 8.1
Let dimV = 2. Then any matrix is similar to one of(

λ1 0
0 λ2

)
;
(
λ 0
0 λ

)
;
(
λ 1
0 λ

)
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The minimal polynomials are

(t− λ1)(t− λ2); (t− λ); (t− λ)2

Example 8.2
Let dimV = 3. Then any matrix is similar to one ofλ1 0 0

0 λ2 0
0 0 λ3

 ;

λ1 0 0
0 λ2 0
0 0 λ2

 ;

λ1 0 0
0 λ2 1
0 0 λ2

 ;

λ 0 0
0 λ 0
0 0 λ

 ;

λ 0 0
0 λ 1
0 0 λ

 ;

λ 1 0
0 λ 1
0 0 λ


The minimal polynomials are

(t− λ1)(t− λ2)(t− λ3); (t− λ1)(t− λ2); (t− λ1)(t− λ2)2; (t− λ); (t− λ)2; (t− λ)3

Definition 8.2 (Nilpotent)
An endomorphism, u, is nilpotent of order n if un = 0 but un−1 6= 0.

Remark 41. We can compute the quantities aλ, gλ, cλ on the Jordan normal form of a
matrix. Indeed, let m ≥ 2 and consider a Jordan block Jm(λ). Then Jm(λ) − λI is the
zero matrix with ones on the off-diagonal. (Jm(λ) − λI)k pushes the ones onto the next
line iteratively, so

(Jm(λ) − λI)k =
(

0 Im−k

0 0

)
Hence (Jm − λI) is nilpotent of order exactlym. In Jordan normal form,

1. aλ is the sum of sizes of blocks with eigenvalue λ. This is the amount of times λ is
seen on the diagonal.

2. gλ is the amount of blocks with eigenvalue λ, since each block represents one ei-
genvector.

3. cλ is the size of the largest block with eigenvalue λ.

Example 8.3
Let

A =
(

0 −1
1 2

)

Wewish to convert thismatrix into Jordan normal form; sowe seek a basis for which
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this matrix becomes Jordan normal form.

χA(t) = (t− 1)2

Hence there exists only one eigenvalue, λ = 1. A − I 6= 0 hence mα(t) = (t − 1)2.
Thus, the Jordan normal form of A is of the form

B =
(

1 1
0 1

)

Now,

ker(A− I) = 〈v1〉; v1 =
(

1
−1

)

Further, we seek a v2 such that

(A− I)v2 = v1 =⇒ v2 =
(

−1
0

)

Such a v2 is not unique. Now,

A =
(

1 −1
−1 0

)(
1 1
0 1

)(
1 −1

−1 0

)−1

§8.3 Direct sum of eigenspaces

Theorem 8.2 (Generalised Eigenspace Decomposition)
Let V be a C-vector space. Let dimV = n < ∞. Then, the minimal polynomial
mα(t) of an endomorphism α ∈ L(V ) satisfies

mα(t) =
k∏

i=1
(t− λi)ci

where λi are the eigenvalues of α. Then

V =
k⊕

j=1
Vj

where Vj = ker[(α− λjI)cj ]. Vj is called a generalised eigenspace associated with λj .

Remark 42. Note that Vj is stable by α, that is, α(Vj) = Vj . Note further that
(α− λjI)|Vj

= µj gives that µj is a nilpotent endomorphism; µcj

j = 0. So the Jordan
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normal form theorem is a statement about nilpotent matrices.

Note, when α is diagonalisable, cj = 1 and hence we recover Vj = ker(α − λjI) and
V =

⊕
Vj .

Proof. The key to this proof is that the projectors onto Vj are ‘explicit’.

First, recall

mα(t) =
k∏

j=1
(t− λj)cj

Then, let

pj(t) =
∏
i 6=j

(t− λi)ci

Then pj have by definition no common factor. So by Euclid’s algorithm, we can find
polynomials qi such that

k∑
i=1

qipi = 1

We define the projector πj = qjpj(α), which is an endomorphism. By construction,
for all v ∈ V , we have

k∑
j=1

πj(v) =
k∑

j=1
qjpj(α(v)) = I(v) = v

Hence,

v =
k∑

i=1
πi(v)

Secondly, recallmα(α) = 0 and we can observe πj(v) ∈ Vj . Indeed,

(α− λjI)cjπj(v) = (α− λjI)cjqjpj(α(v)) = qjmα(α(v)) = 0

Hence πj(v) ∈ Vj = ker(α− λjI)cj .

So, v =
∑k

j=1 πj(v) ∀ v ∈ V where πj(v) ∈ Vj . So, V =
∑k

j=1 Vj .
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We need to show that this sum is direct. Note, for i 6= j, πiπj = 0 as mα | πiπj .
Hence, observe that

πi = πi

 k∑
j=1

πj

 =⇒ πi = πiπi

projector property

Thus, π is a projector. In particular, this implies that πi|Vj
is the identity if i = j and

zero if i 6= j. This immediately implies that the sum is direct;

V =
k⊕

j=1
Vj

Indeed, suppose

v ∈ Vi ∩

∑
j 6=i

Vj


v =

∑
j 6=i

vj , vj ∈ Vj

πi(v) = πi

∑
j 6=i

vj


v = 0
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§9 Properties of bilinear forms

§9.1 Changing basis

Let φ : V × V → F be a bilinear form. Let V be a finite-dimensional F -vector space. Let
B be a basis of V and let [φ]B = [φ]BB be the matrix with entries φ(ei, ej).

Lemma 9.1
Let φ be a bilinear form V × V → F . Then if B,B′ are bases for V , and P = [I]B′,B

we have

[φ]B′ = P ⊺[φ]BP

Proof. This is a special case of the general change of basis formula.

Definition 9.1 (Congruence)
LetA,B ∈ Mn(F ) be squarematrices. We say thatA,B are congruent if there exists
P ∈ Mn(F ) such that A = P ⊺BP .

Remark 43. Congruence is an equivalence relation.

Definition 9.2 (Symmetric)
A bilinear form φ on V is symmetric if, for all u, v ∈ V , we have

φ(u, v) = φ(v, u)

Remark 44. If A is a square matrix, we say A is symmetric iff A = A⊺. Equivalently,
Aij = Aji for all i, j.
So φ is symmetric if and only if [φ]B is symmetric for any basis B.

Note further that to representφ by a diagonalmatrix in some basisB, it must necessarily
be symmetric, since

P ⊺AP = D =⇒ D = D⊺ = (P ⊺AP )⊺ = P ⊺A⊺P =⇒ A = A⊺

§9.2 Quadratic forms

Definition 9.3 (Quadratic Form)
A map Q : V → F is a quadratic form if there exists a bilinear form φ : V × V → F
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such that, for all u ∈ V ,

Q(u) = φ(u, u)

So a quadratic form is the restriction of a bilinear form to the diagonal.

Remark 45. Let B = (ei) be a basis of V . Let A = [φ]B = (φ(ei, ej)) = (aij). Then, for
u =

∑
i xiei ∈ V ,

Q(u) = φ(u, u) = φ

∑
i

xiei,
∑

j

xjej

 =
∑

i

∑
j

xixjφ(ei, ej) =
∑

i

∑
j

xixjaij

We can check that this is equal to

Q(u) = x⊺Ax

where [u]B = x. Note further that

x⊺Ax =
∑

i

∑
j

aijxixj =
∑

i

∑
j

ajixixj =
∑

i

∑
j

aij + aji

2
xixj = x⊺

A+A⊺

2︸ ︷︷ ︸
symmetric

x
So we can always express the quadratic form as a symmetric matrix in any basis.

Proposition 9.1
IfQ : V → F is a quadratic form, then there exists a unique symmetric bilinear form
φ : V × V → F such that Q(u) = φ(u, u).

Proof. Let ψ be a bilinear form on V such that for all u ∈ V , we haveQ(u) = ψ(u, u).
Then, let

φ(u, v) = 1
2

[ψ(u, v) + ψ(v, u)]

Certainly φ is a bilinear form and symmetric. Further, φ(u, u) = ψ(u, u) = Q(u). So
there exists a symmetric bilinear form φ such that Q(u) = φ(u, u), so it suffices to
prove uniqueness.

Let φ be a symmetric bilinear form such that for all u ∈ V we have Q(u) = φ(u, u).
Then, we can find

Q(u+ v) = φ(u+ v, u+ v) = φ(u, u) + φ(v, v) + 2φ(u, v)
= Q(u) +Q(v) + 2φ(u, v)
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Thus φ(u, v) is defined uniquely by Q, since

2φ(u, v) = Q(u+ v) −Q(u) −Q(v)

So φ is unique (when 2 is invertible in F ). This identity for φ(u, v) is known as the
polarisation identity.

§9.3 Diagonalisation of symmetric bilinear forms

Theorem 9.1 (Diagonalisation of symmetric bilinear forms)
Let φ : V × V → F be a symmetric bilinear form, where V is finite-dimensional.
Then there exists a basis B of V such that [φ]B is diagonal.

This does extend to infinite dimensions, we use this in QM a lot.

Proof. By induction on the dimension, suppose the theorem holds for all dimen-
sions less than n for n ≥ 2.

Ifφ(u, u) = 0 for all u ∈ V , thenφ = 0 by the polarisation identity, which is diagonal.
Otherwise φ(e1, e1) 6= 0 for some e1 ∈ V . Let

U = (〈e1〉)⊥ = {v ∈ V : φ(e1, v) = 0}

This is a vector subspace of V , which is in particular

ker {φ(e1, · ) : V → F}

By the rank-nullity theorem, dimV = dimU + 1, as Imφ(e1, ·) = F . Thus dimU =
n− 1.

We now claim that U + 〈e1〉 is a direct sum. Indeed, for v ∈ 〈e1〉 ∩ U , we have
v = λe1 and φ(e1, v) = 0 (v ∈ U). Hence λ = 0 =⇒ v = 0, since by assumption
φ(e1, e1) 6= 0.

So V = U ⊕ 〈e1〉 as the dimensions are the same.

So we find a basis B′ = (e2, . . . , en) of U , which we extend by e1 to B =
(e1, e2, . . . , en). Since U ⊕ 〈e1〉 has dimension n, this is a basis of V . Under this
basis, we find

[φ]B =
(
φ(e1, e1) 0

0 [φ|U ]B′

)
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because

φ(e1, ej) = φ(ej , e1) = 0

for all j ≥ 2 as ej ∈ U . [φ|U ]B′ is symmetric as φ symmetric.

We can then consider φ|U : U × U → F which is bilinear and symmetric.

By the inductive hypothesis we can take a basis B′ such that the restricted φ to be
diagonal, so [φ]B is diagonal in this basis.

Remark 46. The key of this proof is that φ(e1, e1) 6= 0 =⇒ V = (〈e1〉)⊥ ⊕ 〈e1〉.

Example 9.1
Let V = R3 and choose the canonical basis (ei). Let

Q(x1, x2, x3) = x2
1 + x2

2 + 2x2
3 + 2x1x2 + 2x1x3 − 2x2x3

Then, if Q(x1, x2, x3) = x⊺Ax, we have

A =

1 1 1
1 1 −1
1 −1 2


Note that the off-diagonal terms are halved from their coefficients since in the ex-
pansion of x⊺Ax they are included twice.

Then, we can find a basis in which A is diagonal. We could use the above proof and
follow its algorithm to find a basis, or complete the square in each component. We
can write

Q(x1, x2, x3) = (x1 + x2 + x3)2 + x2
3 − 4x2x3 = (x1 + x2 + x3)2 + (x3 − 2x2)2 − (2x2)2

This yields a new coordinate basis x′
1, x

′
2, x

′
3. Then P−1AP is diagonal. P is given

by x′
1
x′

2
x′

3

 =

1 1 1
0 −2 1
0 −2 0


︸ ︷︷ ︸

P −1

x1
x2
x3



§9.4 Sylvester’s law
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Corollary 9.1
If F = C, for any symmetric bilinear form φ there exists a basis of V such that [φ]B
is (

Ir 0
0 0

)

Proof. Since any symmetric bilinear form φ in a finite-dimensional F -vector space
V can be diagonalised, let E = (e1, . . . , en) such that [φ]E is diagonal with diagonal
entries ai. Order the ai such that ai is nonzero for 1 ≤ i ≤ r, and the remaining
values (if any) are zero. For i ≤ r, let √

ai be a choice of a complex root for ai. Then
vi = ei√

ai
for i ≤ r and vi = ei for i > r gives the basis B as required.

Corollary 9.2
Every symmetric matrix ofMn(C) is congruent to a unique matrix of the form(

Ir 0
0 0

)

where r is the rank of the matrix.

This doesn’t work in R as we cannot take root of
√

−1.

Corollary 9.3
Let F = R, and let V be a finite-dimensional R-vector space. Let φ be a symmetric
bilinear form on V . Then there exists a basis B = (v1, . . . , vn) of V such that

[φ]B =

Ip 0 0
0 −Iq 0
0 0 0


for some integers p, q ≥ 0 and p+ q = r(φ).

Proof. Since square roots do not necessarily exist inR, we cannot use the form above.
We first diagonalise the bilinear form in some basisE. Then, reorder and group the
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ai into a positive group of size p, a negative group of size q, and a zero group. Then,

vi =


ei√
ai

i ∈ {1, . . . , p}
ei√
|ai|

i ∈ {p+ 1, . . . , p+ q}

ei i ∈ {p+ q + 1, . . . , n}

This gives a new basis as required.

Definition 9.4 (Signature)
Let F = R. The signature of a bilinear form φ is

s(φ) = p− q

where p and q are defined as in the corollary above. (We also speak of the signature
of the associated quadratic form Q(u) = φ(u, u))

This definition makes sense as it doesn’t depend on the basis.

Theorem 9.2 (Sylvester’s law of inertia)
LetF = R. Let V be a finite-dimensionalR-vector space. If a real symmetric bilinear
form is represented by some matrixIp 0 0

0 −Iq 0
0 0 0


in some basis B, and some other matrixIp′ 0 0

0 −Iq′ 0
0 0 0


in another basis B′, then p = p′ and q = q′. Thus, the signature of the matrix is well
defined.

Definition 9.5 (Positive Definite)
Let φ be a symmetric bilinear form on a real vector space V . We say that

1. φ is positive definite if φ(u, u) > 0 for all nonzero u ∈ V ;

2. φ is positive semidefinite if φ(u, u) ≥ 0 for all u ∈ V ;
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3. φ is negative definite or negative semidefinite if φ(u, u) < 0 or φ(u, u) ≤ 0
respectively for all nonzero u ∈ V .

Example 9.2
The matrix (

Ip 0
0 0

)

is positive definite for p = n, and positive semidefinite for p < n.

We now prove Sylvester’s law.

Proof. In order to proveuniqueness of p, wewill characterise thematrix in away that
does not depend on the basis i.e. we will show that p has a geometric interpretation.

Claim 9.1
p is the largest dimension of a vector subspace of V such that the restriction of
φ on this subspace is positive definite.
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Proof. Suppose we have B = (v1, . . . , vn) and

[φ]B =

Ip 0 0
0 −Iq 0
0 0 0


We consider

X = 〈v1, . . . , vp〉

Then we can easily compute that φ|X is positive definite.

u =
p∑

i=1
λivi

Q(u) = φ(u, u) = φ

 p∑
i=1

λivi,
p∑

j=1
λjvj


=

p∑
i=1

p∑
j=1

φ(vi, vj)

=
p∑

i=1
λ2

i > 0

Let

Y = 〈vp+1, . . . , vn〉

Then, as above, φ|Y is negative semidefinite.

Suppose that φ is positive definite on another subspace X ′. In this case, Y ∩
X ′ = {0}, since if y ∈ Y ∩X ′ we must haveQ(y) ≤ 0, but since y ∈ X ′ we have
y = 0.
Thus, Y + X ′ = Y ⊕ X ′, so n = dimV ≥ dimY + dimX ′. But dimY = n − p,
so dimX ′ ≤ p.

The same argument can be executed for q, hence both p and q are independent
of basis.

As p has a geometric interpretation it cannot depend on the choice of basis.

Remark 47. Similarly q is the largest dimension of a subspace on which φ is negative
definite.

§9.5 Kernels of bilinear forms
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Definition 9.6 (Kernel)
LetK = {v ∈ V : ∀u ∈ V, φ(u, v) = 0}. This is the kernel of the bilinear form.

Remark 48. By the rank-nullity theorem,

dimK + rankφ = n

F = R. Using the above notation, we can show that there exists a subspace T of di-
mension n − (p + q) + min {p, q} such that φ|T = 0. Indeed, let B = (v1, . . . , vn) such
that

[φ]B =

Ip 0 0
0 −Iq 0
0 0 0


The quadratic form has a zero subspace of dimension n − (p + q) in the bottom right.
But by setting

T = {v1 + vp+1, . . . , vq + vp+q, vp+q+1, . . . , vn}

we can combine the positive and negative blocks (assuming here that p ≥ q) to produce
more linearly independent elements of the kernel. In particular, dimT is the largest
possible dimension of a subspace T ′ of V such that φ|T ′ = 0.

§9.6 Sesquilinear forms

Let F = C. The standard inner product on Cn is defined to be

〈x1
...
xn

 ,
y1

...
yn

〉 =
n∑

i=1
xiyi

This is not a bilinear form onCdue to the complex conjugate, it is not linear in the second
entry, 〈x, λy〉 = λ 〈x, y〉.

Definition 9.7 (Sesquilinear Form)
Let V,W be C-vector spaces. A form φ : V × W → C is called sesquilinear if it is
linear in the first entry, and

φ(v, λ1w1 + λ2w2) = λ1φ(v, w1) + λ2φ(v, w2)

so it is antilinear with respect to the second entry.
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Definition 9.8 (Matrix of Sesquilinear Form)
Let B = (v1, . . . , vm) be a basis of V and C = (w1, . . . , wn) be a basis of W . Then
[φ]B,C = (φ(vi, wj)).

Lemma 9.2
Let B = (v1, . . . , vm) be a basis of V and C = (w1, . . . , wn) be a basis ofW .

φ(v, w) = [v]⊺B[φ]B,C [w]C

Proof. Left as an exercise.

Lemma 9.3 (Change of Basis)
Let B,B′ be bases of V and C,C ′ be bases of W . Let P = [I]B′,B and Q = [I]C′,C .
Then

[φ]B′,C′ = P ⊺[φ]B,CQ

Proof. Left as an exercise.

§9.7 Hermitian forms

Definition 9.9 (Hermitian Forms)
Let V be a finite-dimensional C-vector space. Let φ be a sesquilinear form on V .
Then φ is Hermitian if, for all u, v ∈ V ,

φ(u, v) = φ(v, u)

This is the complex value generalisation of symmetric bilinear form.

Remark 49. If φ is Hermitian, then φ(u, u) = φ(u, u) ∈ R. Further, φ(λu, λu) =
|λ|2φ(u, u). This allows us to define positive and negative definite Hermitian forms.

Lemma 9.4
A sesquilinear form φ : V × V → C is Hermitian iff for all basis B of V ,

[φ]B = [φ]†B
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Proof. Let A = [φ]B = (aij). Then aij = φ(ei, ej), and aji = φ(ej , ei) = φ(ei, ej) =
aij . So A

⊺ = A.

Conversely suppose that [φ]B = A = A
⊺. Now let

u =
n∑

i=1
λiei; v =

n∑
i=1

µiei

Then,

φ(u, v) = φ

 n∑
i=1

λiei,
n∑

j=1
µjej

 =
n∑

i=1

n∑
j=1

λiµjaij

Further,

φ(v, u) = φ

 n∑
i=1

µiei,
n∑

j=1
λjej

 =
n∑

i=1

n∑
j=1

µjλiaij =
n∑

j=1
λiµjaji

which is equivalent. Hence φ is Hermitian.

§9.8 Polarisation identity

A Hermitian form φ on a complex vector space V is entirely determined by a quadratic
form Q : V → R such that v 7→ φ(v, v) by the formula

φ(u, v) = 1
4

[Q(u+ v) −Q(u− v) + iQ(u+ iv) − iQ(u− iv)]

Proof left as an exercise.

§9.9 Hermitian formulation of Sylvester’s law

Theorem 9.3 (Sylvester’s law of inertia for Hermitian forms)
Let V be a finite-dimensional C-vector space. Let φ : V × V → C be a Hermitian
form on V . Then there exists a basis B = (v1, . . . , vn) of V such that

[φ]B =

Ip 0 0
0 −Iq 0
0 0 0


where p, q depend only on φ and not B.
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Proof. The following is a sketch proof; it is nearly identical to the case of real sym-
metric bilinear forms.

If φ = 0, existence is trivial. Otherwise, using the polarisation identity there exists
e1 6= 0 such that φ(e1, e1) 6= 0. Let

v1 = e1√
|φ(e1, e1)|

=⇒ φ(v1, v1) = ±1

Consider the orthogonal spaceW = {w ∈ V : φ(v1, w) = 0}. We can check, arguing
analogously to the real case, that V = 〈v1〉 ⊕W . Hence, we can inductively diagon-
alise φ.

p, q are unique. Indeed, we can prove that p is the maximal dimension of a sub-
space on which φ is positive definite (which is well-defined since φ(u, u) ∈ R). The
geometric interpretation of q is similar.

§9.10 Skew-symmetric forms

Definition 9.10 (Skew-symmetric Form)
Let V be a finite-dimensional R-vector space. Let φ be a bilinear form on V . Then
φ is skew-symmetric if, for all u, v ∈ V ,

φ(u, v) = −φ(v, u)

Remark 50. φ(u, u) = −φ(u, u) = 0. Also, in any basis B of V , we have [φ]B = −[φ]⊺B .
Any real matrix can be decomposed as the sum

A = 1
2

(A+A⊺) + 1
2

(A−A⊺)

where the first summand is symmetric and the second is skew-symmetric.

§9.11 Skew-symmetric formulation of Sylvester’s law

Theorem 9.4 (Sylvester’s law of inertia for Skew-symmetric forms)
Let V be a finite-dimensional R-vector space. Let φ : V × V → R be a skew-
symmetric form on V . Then there exists a basis

B = (v1, w1, v2, w2, . . . , vm, wm, v2m+1, v2m+2, . . . , vn)
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of V such that

[φ]B =



0 1
−1 0

0 1
−1 0

. . .
0


withm 2 × 2 blocks.

Sketch Proof. This is again very similar to the previous case.

We will perform an inductive step on the dimension of V , n = dimV .

If φ 6= 0, there exist v1, w1 such that φ1(v1, w1) 6= 0. After scaling one of the vec-
tors, we can assume φ(v1, w1) = 1. Since φ is skew-symmetric, φ(w1, v1) = −1.
Then v1, w1 are linearly independent; if they were linearly dependent we would
have φ(v1, w1) = φ(v1, λv1) = λφ(v1, v1) = 0.

Let U = 〈v1, w1〉 and let W = {v ∈ V : φ(v1, v) = φ(w1, v) = 0} and we can show
V = U ⊕W . Then induction gives the required result.

Corollary 9.4
Skew-symmetric matrices have an even rank.
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§10 Inner Product Spaces

§10.1 Definition

Definition 10.1 (Inner Product)
Let V be a vector space over R or C. A scalar product or inner product is a positive-
definite symmetric (respectively Hermitian) bilinear form φ on V .

Notation. We write

φ(u, v) = 〈u, v〉

Definition 10.2 (Inner Product Space)
V , when equipped with this inner product, is called a real (respectively complex)
inner product space.

Example 10.1
In Cn, we define

〈x, y〉 =
n∑

i=1
xiyi

Example 10.2
Let V = C0([0, 1],C). Then we can define

〈f, g〉 =
∫ 1

0
f(t)g(t) dt

This is the L2 scalar product.

Example 10.3
We can fix a weight ω : [0, 1] → R⋆

+ where R⋆
+ = R+ \ {0} and define

〈f, g〉 =
∫ 1

0
f(t)g(t)w(t) dt

Remark 51. Typically it suffices to check 〈u, u〉 = 0 =⇒ u = 0 since linearity and
positivity are usually trivial.
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Definition 10.3 (Norm)
Let V be an inner product space. Then for v ∈ V , the norm of v induced by the
inner product is defined by

‖v‖ = (〈v, v〉)1/2

This is real, and positive if v 6= 0.

§10.2 Cauchy-Schwarz inequality

Lemma 10.1 (Cauchy-Schwarz Inequality)
For an inner product space,

|〈u, v〉| ≤ ‖u‖‖v‖

Remark 52. Note that equality iff u, v colinear.

Proof. F = R or C.

Let t ∈ F . Then,

0 ≤ ‖tu− v‖ = 〈tu− v, tu− v〉 = tt 〈u, u〉 − t 〈u, v〉 − t 〈v, u〉 + ‖v‖2

Since the inner product is Hermitian 〈v, u〉 = 〈u, v〉,

0 ≤ |t|2‖u‖2 + ‖v‖2 − 2 Re(t 〈u, v〉)

By choosing

t = 〈u, v〉
‖u‖2

we have

0 ≤ |〈u, v〉|2

‖u‖2 + ‖v‖2 − 2 Re
(

|〈u, v〉|2

‖u‖2

)

Since the term under the real part operator is real, the result holds.

Proving equality implies u, v are proportional is left as an exercise.

Corollary 10.1 (Triangle Inequality)
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In an inner product space,

‖u+ v‖ ≤ ‖u‖ + ‖v‖

Proof. We have

‖u+ v‖2 = 〈u+ v, u+ v〉
= ‖u‖2 + 2 Re(〈u, v〉) + ‖v‖2

≤ ‖u‖2 + ‖v‖2 + 2‖u‖ · ‖v‖ by Cauchy-Schwarz
= (‖u‖ + ‖v‖)2

Remark 53. Any inner product induces a norm, but not all norms derive from scalar
products.

§10.3 Orthogonal and orthonormal sets

Definition 10.4 (Orthogonal and Orthonormal Sets)
A set (e1, . . . , ek) of non-zero vectors of V is said to be orthogonal if 〈ei, ej〉 = 0 for
all i 6= j. The set is said to be orthonormal if it is orthogonal and ‖ei‖ = 1 for all i.
In this case, 〈ei, ej〉 = δij .

Lemma 10.2
If (e1, . . . , ek) are orthogonal and nonzero, then they are linearly independent. Fur-
ther, let v ∈ 〈{ei}〉. Then,

v =
k∑

j=1
λjej =⇒ λj = 〈v, ej〉

‖ej‖2

Proof. Suppose

k∑
i=1

λiei = 0

Then,

0 =
〈

k∑
i=1

λiei, ej

〉
=⇒ 0 =

k∑
i=1

λi 〈ei, ej〉 = λj
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Thus λj = 0 for all j.

Further, for v in the span of these vectors,

〈v, ej〉 =
k∑

i=1
λi 〈ei, ej〉 = λj‖ej‖2

§10.4 Parseval’s identity

Corollary 10.2 (Parseval’s Identity)
Let V be a finite-dimensional inner product space. Let (e1, . . . , en) be an orthonor-
mal basis. Then, for any vectors u, v ∈ V , we have

〈u, v〉 =
n∑

i=1
〈u, ei〉 〈v, ei〉

Hence,

‖u‖2 =
n∑

i=1
|〈u, ei〉|2

Proof. By orthonormality,

u =
n∑

i=1
〈u, ei〉 ei; v =

n∑
i=1

〈v, ei〉 ei

Hence, by orthogonality and sesquilinearity,

〈u, v〉 =
n∑

i=1
〈u, ei〉 〈v, ei〉

By taking u = v we find

‖u‖2 = 〈u, u〉 =
n∑

i=1
|〈u, ei〉|2

§10.5 Gram-Schmidt orthogonalisation process
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Theorem 10.1 (Gram-Schmidt Orthogonalisation Process)
Let V be an inner product space. Let (vi)i∈I be a linearly independent family of
vectors such that I is countable (or finite). Then there exists a family (ei)i∈I of or-
thonormal vectors such that for all k ≥ 1,

〈v1, . . . , vk〉 = 〈e1, . . . , ek〉

Proof. This proof is an explicit algorithm to compute the family (ei), which will be
computed by induction on k.

For k = 1, take e1 = v1
‖v1‖ as v1 6= 0 as (vi) free.

Inductively, suppose (e1, . . . , ek) satisfy the conditions as above. Then we will find
a valid ek+1. We define

e′
k+1 = vk+1 −

k∑
i=1

〈vk+1, ei〉 ei

This ensures that the inner product between e′
k+1 and any basis vector ej is zero,

while maintaining the same span.

〈
e′

k+1, ej
〉

=
〈
vk+1 −

k∑
i=1

〈vk+1, ei〉 ei, ej

〉
= 〈vk+1, ej〉 − 〈vk+1, ej〉
= 0.

Suppose e′
k+1 = 0. Then, vk+1 ∈ 〈e1, . . . , ek〉 = 〈v1, . . . , vk〉 which contradicts the

fact that the (vi) family is free.
〈v1, . . . , vk+1〉 = 〈e1, . . . , e

′
k+1〉.

Thus,

ek+1 =
e′

k+1∥∥∥e′
k+1

∥∥∥
satisfies the requirements.

Corollary 10.3
In finite-dimensional inner product spaces, there always exists an orthonormal basis.
In particular, any orthonormal set of vectors can be extended into an orthonormal
basis.
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Proof. Pick (e1, . . . , ek) orthonormal. Then they are linearly independent so we can
extend to (e1, . . . , ek, vk+1, . . . , vn) a basis of V . Apply Gram Schmidt to this set noti-
cing that there is no need to modify (e1, . . . , ek). So we get (e1, . . . , ek, ek+1, . . . , en),
an orthonormal basis of V .

Remark 54. Let A ∈ Mn(R) be a real-valued (or complex-valued) matrix. Then, the
column vectors of A are orthonormal if A⊺A = I (or A⊺A = I in the complex-valued
case).

§10.6 Orthogonality of matrices

Definition 10.5 (Orthogonal and Unitary Matrices)
A matrix A ∈ Mn(R) is orthogonal if A⊺A = I , iff A⊺ = A−1.
A matrix A ∈ Mn(C) is unitary if A⊺A = I , iff A† = A−1.

Proposition 10.1
Let A be a square, non-singular, real-valued (or complex-valued) matrix. Then A
can be written as A = RT where T is upper triangular and R is orthogonal (or
respectively unitary).

Proof. We apply the Gram-Schmidt process to the column vectors of the matrix.
This gives us an orthonormal set of vectors, which gives an upper triangular matrix
in this new basis.

§10.7 Orthogonal complement and projection

Definition 10.6 (Orthogonal Direct Sum)
Let V be an inner product space. Let V1, V2 ≤ V . Then we say that V is the ortho-
gonal direct sum of V1 and V2 if

1. V = V1 ⊕ V2

2. for all vectors v1 ∈ V1, v2 ∈ V2 we have 〈v1, v2〉 = 0.

Notation. For orthogonal direct sums we write V = V1
⊥
⊕ V2.

Remark 55. If for all vectors v1, v2 we have 〈v1, v2〉 = 0, then v ∈ V1 ∩ V2 =⇒ ‖v‖2 =
0 =⇒ v = 0. Hence the sum is always direct if the subspaces are orthogonal.
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Definition 10.7 (Orthogonal)
Let V be an inner product space and letW ≤ V . We define the orthogonal ofW to
be

W⊥ = {v ∈ V : ∀w ∈ W, 〈v, w〉 = 0}

Lemma 10.3
For any inner product space V and any subspaceW ≤ V , we have V = W

⊥
⊕W⊥.

Proof. First note thatW⊥ ≤ V . Then, if w ∈ W , w ∈ W⊥, we have

‖w‖2 = 〈w,w〉 = 0

since they are orthogonal, so the vector subspaces intersect only in the zero vector.
Now, we need to show V = W +W⊥. Let (e1, . . . , ek) be an orthonormal basis ofW
and extend it into (e1, . . . , ek, ek+1, . . . , en) which can be made orthonormal. Then,
(ek+1, . . . , en) are elements ofW⊥ and form a basis.

§10.8 Projection maps

Definition 10.8 (Projection)
Suppose V = U ⊕W , so U is a complement ofW in V .
Then, we define

π : V → W

v = u+ w 7→ w

This is well defined, since the sum is direct.
π is linear, and π2 = π.

We say that π is the projection operator ontoW .

Remark 56. The map I − π is the projection onto U , where I is the identity map.

Remark 57. If V an inner product space and W finite dimensional, then V = W⊥ ⊕ W
so we can let U = W⊥ and find π explicitly.

Lemma 10.4
Let V be an inner product space. LetW ≤ V be a finite-dimensional subspace. Let
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(e1, . . . , ek) be an orthonormal basis forW (by Gram Schmidt). Then,

1. π(v) =
∑k

i=1 〈v, ei〉 ei ∀ v ∈ V .

2. for all v ∈ V,w ∈ W , ‖v − π(v)‖ ≤ ‖v − w‖ with equality iff w = π(v), hence
π(v) is the point inW closest to v.

Remark 58. This lemma has an infinite dimensional generalisation:

• V inner product space → Hilbert space (completeness)

• W finite dimensional → closed.

Proof. LetW = 〈e1, . . . , ek〉 where (ei) are an orthonormal basis.

We define π(v) =
∑k

i=1 〈v, ei〉 ei.
Then

v = (v − π(v)) + π(v)
W

We claim that the remaining term is in the orthogonal; v − π(v) ∈ W⊥. Indeed, we
must show 〈v − π(v), w〉 = 0 for all w ∈ W . Equivalently, 〈v − π(v), ei〉 = 0 for all
basis vectors ei ofW . We can explicitly compute

〈v − π(v), ej〉 = 〈v, ej〉 −
〈

k∑
i=1

〈v, ei〉 ei, ej

〉

= 〈v, ej〉 −
k∑

i=1
〈v, ei〉 〈ei, ej〉

= 〈v, ej〉 − 〈v, ej〉 = 0

Hence, v = (v − π(v)) + π(v) is a decomposition intoW andW⊥ so V = W +W⊥.
W ∩W⊥ = {0} as for v ∈ W ∩W⊥ 〈v, v〉 = 0 so v = 0, so we have V = W

⊥
⊕W⊥.

For the second part, let v ∈ V , w ∈ W , and we compute

‖v − w‖2 =

∥∥∥∥∥∥∥v − π(v)︸ ︷︷ ︸
∈W ⊥

+π(v) − w︸ ︷︷ ︸
∈W

∥∥∥∥∥∥∥
2

= 〈v − π(v) + π(v) − w, v − π(v) + π(v) − w〉
= ‖v − π(v)‖2 + ‖π(v) − w‖2

≥ ‖v − π(v)‖2

with equality if and only if w = π(v).
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§10.9 Adjoint maps

Definition 10.9 (Adjoint Map)
Let V,W be finite-dimensional inner product spaces. Let α ∈ L(V,W ). Then there
exists a unique linear map α⋆ : W → V such that for all v, w ∈ V,W ,

〈α(v), w〉 = 〈v, α⋆(w)〉

Moreover, if B is an orthonormal basis of V , and C is an orthonormal basis of W ,
then

[α⋆]C,B =
(
[α]B,C

)⊺
Proof. Let B = (v1, . . . , vn) and C = (w1, . . . , wm) and A = [α]B,C = (aij).

To check existence, we define [α⋆]C,B = A
⊺ = (cij) and explicitly check the defini-

tion. By orthogonality,

〈
α
(∑

λivi

)
,
∑

µjwj

〉
=
〈∑

i,k

λiakiwk,
∑

j

µjwj

〉
=
∑
i,j

λiajiµj

Then,

〈∑
λivi, α

⋆
(∑

µjwj

)〉
=
〈∑

i

λivi,
∑
j,k

µjckjvk

〉
=
∑
i,j

λicijµj

So equality requires cij = aji.

Uniqueness follows from the above; the expansions are equivalent for any vector if
and only if cij = aji.

Remark 59. The same notation, α⋆, is used for the adjoint as just defined, and the dual
map as defined before. If V,W are real product inner spaces and α ∈ L(V,W ), we define
ψ : V → V ⋆ such that ψ(v)(x) = 〈x, v〉 and similarly forW . Then we can check that the
adjoint for α is given by the composition of ψ from W → W ⋆, then applying the dual
fromW ⋆ → V ⋆, then applying the inverse of ψ from V ⋆ → V .

§10.10 Self-adjoint and isometric maps

Definition 10.10 (Self-Adjoint and Isometries)
Let V be a finite-dimensional inner product space, and α be an endomorphism of
V . Let α⋆ ∈ L(V ) be the adjoint map. Then,
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1. the condition 〈αv,w〉 = 〈v, αw〉 ∀ v, w ∈ V is equivalent to the condition α =
α⋆, and such an α is called self-adjoint (for R we call such endomorphisms
symmetric, and for C we call such endomorphisms Hermitian);

2. the condition 〈αv, αw〉 = 〈v, w〉 ∀ v, w ∈ V is equivalent to the condition
α⋆ = α−1, and such an α is called an isometry (for R it is called orthogonal,
and for C it is called unitary).

Proposition 10.2
The conditions for isometries defined as above are equivalent.

Proof. ( =⇒ ): Suppose 〈αv, αw〉 = 〈v, w〉.
Then for v = w, we find ‖αv‖2 = ‖v‖2, so α preserves the norm. In particular, this
implies kerα = {0}. Since α is an endomorphism and V is finite-dimensional, α is
bijective. Then for all v, w ∈ V ,

〈v, α⋆(w)〉 = 〈αv,w〉 =
〈
αv, α

(
α−1(w)

)〉
=
〈
v, α−1(w)

〉
〈v, α⋆(w)〉 =

〈
v, α−1(w)

〉
∀ v, w ∈ V〈

v, α⋆(w) − α−1(w)
〉

= 0〈
α⋆(w) − α−1(w), α⋆(w) − α−1(w)

〉
= 0

α⋆(w) = α−1(w).

Hence α⋆ = α−1.

(⇐=): Conversely, if α⋆ = α−1 we have

〈αv, αw〉 = 〈v, α⋆(αw)〉 = 〈v, w〉

as required.

Remark 60. Using the polarisation identity, we can show that α is isometric if and only if
for all v ∈ V , ‖α(v)‖ = ‖v‖. I.e. preserving the scalar product iff preserving the norm.

Lemma 10.5
Let V be a finite-dimensional real (or complex) inner product space. Then for α ∈
L(V ),

1. α is self-adjoint iff for all orthonormal basesB of V , we have [α]B is symmetric
(or Hermitian);
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2. α is an isometry iff for all orthonormal basesB ofV , we have [α]B is orthogonal
(or unitary).

Proof. Let B be an orthonormal basis for V . Then we know [α⋆]B = [α]†B . We can
then check that [α]†B = [α]B and [α]†B = [α]−1

B respectively.

Definition 10.11 (Orthogonal Group)
For F = R, we define the orthogonal group of V by

O(V ) = {α ∈ L(V ) : α is an isometry}

Definition 10.12 (Unitary Group)
For F = C, we define the unitary group of V by

U(V ) = {α ∈ L(V ) : α is an isometry}

Remark 61. If V is finite dimensional and {e1, . . . , en} an orthonormal basis:

• F = R: O(v) is bijective with the set of orthogonal bases of V under
α 7→ {α(e1), . . . , α(en)}.

• F = C: U(v) is bijective with the set of orthogonal bases of V under
α 7→ {α(e1), . . . , α(en)}.

§10.11 Spectral theory for self-adjoint operators

Spectral theory is the study of the spectrum of operators. Recall that in finite-
dimensional inner product spaces V,W , α ∈ L(V,W ) yields the adjoint α⋆ ∈ L(W,V )
such that for all v ∈ V,w ∈ W , we have 〈α(v), w〉 = 〈v, α⋆(w)〉.

Linear maps become compact operators in infinite dimensions.

Lemma 10.6
Let V be a finite-dimensional inner product space. Let α ∈ L(V ) be a self-adjoint
endomorphism. Then

• α has real eigenvalues

• eigenvectors of α with respect to different eigenvalues are orthogonal.
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Proof. Suppose λ ∈ C, v ∈ V nonzero such that α(v) = λv. Then, 〈λv, v〉 = λ‖v‖2

and also

〈αv, v〉 = 〈v, αv〉 = 〈v, λv〉 = λ‖v‖2

Hence λ = λ since v 6= 0.

Now, suppose µ 6= λ and w ∈ V nonzero such that α(w) = µw. Then,

λ 〈v, w〉 = 〈αv,w〉 = 〈v, αw〉 = µ 〈v, w〉 = µ 〈v, w〉

So if λ 6= µwe must have 〈v, w〉 = 0.

Theorem 10.2 (Spectral Theorem for Self-Adjoint Maps)
Let V be a finite-dimensional inner product space. Let α ∈ L(V ) be self-adjoint.
Then V has an orthonormal basis of eigenvectors of α. Hence α is diagonalisable in
an orthonormal basis.

Proof. F = R or C. We will consider induction on the dimension of V . True for
n = 1.

Suppose A = [α]B with respect to any orthonormal basis B. By the fundamental
theorem of algebra, we know that χA(t) has a (complex) root, say λ.
But since λ is an eigenvalue of α and α is self-adjoint, λ ∈ R.
Now, we choose an eigenvector v1 = V \ {0} such that α(v1) = λv1. We can set
‖v1‖ = 1 by linearity. Let U = 〈v1〉⊥ ≤ V . We then observe that U is stable by
α; α(U) ≤ U . Indeed, let u ∈ U . Then 〈α(u), v1〉 = 〈u, α(v1)〉 = λ 〈u, v1〉 = 0 by
orthogonality. Hence α(u) ∈ U .

We can then restrict α to the domainU where it is still self-adjoint, and by induction
we can then choose an orthonormal basis of eigenvectors for U as dimU = dimV −

1. Since V = 〈v1〉
⊥
⊕ U we have an orthonormal basis of eigenvectors for V when

including v1.

Remark 62.

A =


λ 0 . . . 0
0
...
0

Â


where Â = [φ |U ]. This illustrates that φ |U is stable.
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Corollary 10.4
Let V be a finite-dimensional inner product space. Let α ∈ L(V ) be self-adjoint.
Then V is the orthogonal direct sum of all the eigenspaces of α.

§10.12 Spectral theory for unitary maps

Lemma 10.7
Let V be a complex inner product space (Hermitian sesquilinear structure). Let α
be unitary, so α⋆ = α−1.

• Then all eigenvalues of α have unit norm.

• Eigenvectors corresponding to different eigenvalues are orthogonal.

Proof. Let λ ∈ C, v ∈ V \ {0} such that α(v) = λv. First, λ 6= 0 since α is invertible,
and in particular kerα = {0}. Since v = λα−1(v), we can compute

λ 〈v, v〉 = 〈λv, v〉 = 〈αv, v〉 =
〈
v, α−1v

〉
=
〈
v,

1
λ
v

〉
= λ−1 〈v, v〉

Hence (λλ− 1)‖v‖2 = 0 giving |λ| = 1.

Further, suppose µ ∈ C and w ∈ V \ {0} such that α(w) = µw, λ 6= µ. Then

λ 〈v, w〉 = 〈λv,w〉 = 〈αv,w〉 =
〈
v, α−1w

〉
=
〈
v,

1
µ
w

〉
= µ−1 〈v, w〉 = µ 〈v, w〉

since µµ = 1. As λ 6= µ then 〈v, w〉 = 0.

Theorem 10.3 (Spectral Theorem for Unitary Maps)
Let V be a finite-dimensional complex inner product space. Letα ∈ L(V ) be unitary.
Then V has an orthonormal basis of eigenvectors of α. Hence α is diagonalisable in
an orthonormal basis.

Proof. Let A = [α]B where B is an orthonormal basis. Then χA(t) has a complex
root λ.
As before, let v1 6= 0 such that α(v1) = λv1 and ‖v1‖ = 1.
Let U = 〈v1〉⊥, and we claim that α(U) ≤ U . Indeed, let u ∈ U , and we find

〈α(u), v1〉 =
〈
u, α−1(v1)

〉
=
〈
u,

1
λ
v1

〉
= λ−1 〈u, v1〉
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Since 〈u, v1〉 = 0, we have α(u) ∈ U . Hence, α restricted to U is a unitary endo-
morphism of U . By induction we have an orthonormal basis of eigenvectors of α
for U and hence for V .

Remark 63. We used the fact that the field is complex to find an eigenvalue. In general, a
real-valued orthonormal matrix A giving AA⊺ = I cannot be diagonalised over R. For
example, consider

A =
(

cos θ − sin θ
sin θ cos θ

)

This is orthogonal and normalised. However, χA(λ) = 1 + 2λ cos θ + λ2 hence λ = e±iθ

which are complex in the general case.

§10.13 Application to bilinear forms

We wish to extend the previous statements about spectral theory into statements about
bilinear forms.

Corollary 10.5
Let A ∈ Mn(R) (or Mn(C)) be a symmetric (or respectively Hermitian) matrix.
Then there exists an orthonormal (respectively unitary) matrix P such that P ⊺AP
(or P †AP ) is diagonal with real-valued entries.

Proof. Using the standard inner product over Rn, A ∈ L(Fn) is self-adjoint and
hence there exists an orthonormal basis B of Fn such that A is diagonal in this
basis. Let P = (v1, . . . , vn) be the matrix of this basis. Since B is orthonormal, P is
orthogonal (or unitary). So P ⊺P = I (P †P = I). We know P−1AP is diagonal and
so P ⊺AP is too. The eigenvalues are real as they are the eigenvalues of a symmetric
operator, hence the diagonal matrix is real.

Corollary 10.6
LetV be a finite-dimensional real (or complex) inner product space. Letφ : V ×V →
F be a symmetric (or Hermitian) bilinear form. Then, there exists an orthonormal
basis B of V such that [φ]B is diagonal.

Proof. Let B = {v1, . . . , vn} be any orthonormal basis of V . Let A = [φ]B .

φ symmetric (respectively Hermitian) so A⊺ = A (or respectively A† = A), hence
there exists an orthogonal (respectively unitary) matrix P such that P ⊺AP (P †AP )
is diagonal. Let (vi) be the ith rowofP ⊺ (orP †). Then (v1, . . . , vn) is an orthonormal
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basis B′ of V such that [φ]B′ = P ⊺AP a is this diagonal matrix.
aUsing change of basis formula for bilinear forms

Remark 64. The diagonal entries of P ⊺AP are the eigenvalues of A.

Moreover, we can define the signature s(φ) to be the difference between the number of
positive eigenvalues of A and the number of negative eigenvalues of A.

§10.14 Simultaneous diagonalisation

Corollary 10.7 (Simultaneous Diagonalisation)
Let V be a finite-dimensional real (or complex) vector space. Let φ,ψ be symmetric
(or Hermitian) bilinear forms on V . Let φ be positive definite. Then there exists a
basis (v1, . . . , vn) of V with respect towhichφ andψ are representedwith a diagonal
matrix.

Proof. Since φ is positive definite, V equipped with φ is a finite-dimensional inner
product space where 〈u, v〉 = φ(u, v). Hence, there exists a basis of V in which ψ is
represented by a diagonal matrix, which is orthonormal with respect to the inner
product defined by φ. Then, φ in this basis is represented by the identity matrix
given by φ(vi, vj) = 〈vi, vj〉 = δij , which is diagonal.

So both bilinear forms are diagonal in B.

Corollary 10.8 (Matrix Reformulation of Simultaneous Diagonalisation)
Let A,B ∈ Mn(R) (or C) which are symmetric (or Hermitian). Suppose for all
x 6= 0 we have x†Ax > 0, so A is positive definite. Then there exists an invertible
matrix Q ∈ Mn(R) (or C) such that Q⊺AQ (or Q†AQ) and Q⊺BQ (or Q†BQ) are
diagonal.

Proof. A induces a quadratic form Q(x) = x†Ax which is positive definite by as-
sumption. Similarly, Q̃(x) = x†Bx is induced byB. Thenwe can apply the previous
corollary and change basis.
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