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§1 Vector spaces and linear dependence

§1.1 Vector spaces

Definition 1.1 (F-vector space)
Let F' be an arbitrary field. A F-vector space is an abelian group (V, +) equipped
with a function

FxV =V, (A\v)— X

such that
1. AMv1 + v2) = Avg + Avg
2. (A1 4 )y = Mo+ Ao
3. M) = (Ap)v
4. lv=v

Such a vector space may also be called a vector space over F'.

Example 1.1
Let n € N. F" is the space of column vectors of length n with entries in F'.

x1
veF"v=|!|,5; € F,1<i<n.
:I/"n
U1 w1 V] + wy U1
vtw=|:|+|:]|= : P UES
Un, Wy, Un, + Wy, AUy,

F™ is a F'-vector space.

Example 1.2
Let X be a set, and define R* = {f: X — R} (set of real valued functions on X).
Then R is an R-vector space:

o (fi+ fo)(z) = fi(z) + fox).
o (Af)(z)=Af(z),A e R.



Example 1.3

Define M,, ,,,(F') to be the set of n x m F-valued matrices. This is an F-vector space,
where the sum of matrices is computed elementwise.

Remark 1. The axioms of scalar multiplication imply that Vv € V, O - v = Oy.

§1.2 Subspaces

Definition 1.2 (Subspace)

Let V be an F-vector space. The subset U C V is a vector subspace of V, denoted
U<V,it

1. 0y €U
2. up,ug EU = ug+us €U
3 MNu) e FxU = MuelU

Conditions (ii) and (iii) are equivalent to
VAL, Ao € F,Vuy,us € Uy A\up + Aaug € U

This means that U is stable by vector addition and scalar multiplication.

Proposition 1.1
If V is an F-vector space, and U <V, then U is an F-vector space.

Example 1.4

Let V = RE be the space of functions R — R. The set C(R) of continuous real
functions is a subspace of V. The set P(R) of real polynomials is a subspace of C'(R)
so P(R) < V.

Example 1.5

Consider the subset of R3 such that 2 +z2+x3 = t for some real t. Thisis a subspace
for ¢t = 0 only, since no other ¢ values yields the origin as a member of the subset.

Proposition 1.2 (Intersection of two subspaces is a subspace)
Let V be an F-vector space. Let U, W < V. Then U N W is a subspace of V.



Proof. First, note Oy € U,0y € W = 0y € U N W. Now, consider stability:
AL, € Flu, v e UNW = Av1 + Avg € U, A\jv1 + Aovg € W

Hence stability holds. 0

§1.3 Sum of subspaces

Warning 1.1

The union of two subspaces is not, in general, a subspace. For instance, consider
R, iR C C. Their union does not span the space; for example, 1 + i ¢ R U iR.

Definition 1.3 (Subspace Sum)
Let V be an F-vector space. Let U, W < V. The sum U + W is defined to be the set

U+W={ut+w:ueUweW}

Proposition 1.3
U + W is a subspace of V.

Proof. First, note Oy = Oy + Oy = Oy. Then, for A\j, A2 € Fand f,g € U+ W we
have

f=fi+f
g=091+ g2
with f1,g1 € U and f5, g2 € W. Hence

ALf 4+ A2g = Mi(f1 + f2) + Aa(g1 + g2)
=(Mfi+Xq1)+ Aifa+Ag2) €U + W.

eU ew

Proposition 1.4
The sum U + W is the smallest subspace of V' that contains both U and W'.



Proof. Left as an exercise. O

§1.4 Quotients

Definition 1.4 (Quotient)

Let V be an F-vector space. Let U < V. The quotient space V/U is the abelian
group V/U equipped with the scalar multiplication function

FxV/U-V/U, ANv+U)—v+U

Note. We must check that the multiplication operation is well-defined. Indeed, suppose
vy +U = vy + U. Then,

v— €U = ANvi—v) €U = My +U=Mu+U€V/U

Proposition 1.5
V/U is an F-vector space.

Proof. Left as an exercise O

§1.5 Span

Definition 1.5 (Span of a family of vectors)

Let V be an F-vector space. Let S C V be a subset (so S is a set of vectors). We
define the span of S, written (5), as the set of finite linear combinations of elements
of S. In particular,

(S) = {Z AsUs: Ag € F,vs € S, only finitely many nonzero )\s}
ses

By convention, we specify

(@) = {0}

so that all spans are subspaces.

Remark 2. (S) is the smallest vector subspace of V' containing S.



Example 1.6
Let V =R3, and

1 0 3
S Of,(1],]-2
0 2 —4
Then we can check that
a
(S) = b|:(ab)eR
2b
Example 1.7
Let V = R™. We define
0
0
€, — 1
0
0

where the 1 is in the ith position. Then V' = ((e;)1<i<n)-

Example 1.8
Let X be a set, and R* = {f: X — R}. Thenlet S;: X — R be defined by

1 y==z

Sz(y) = {

0 otherwise

Then, ((Sz)zex) = { f € RX: f has finite support}, where the support of f is
defined to be {z: f(x) # 0}.

§1.6 Dimensionality

Definition 1.6



Let V be an F-vector space. Let S C V. We say that S spans V if (S) = V. If S spans
V, we say that S is a generating family of V.

Definition 1.7 (Finite dimensional)

Let V be an F-vector space. V is finite dimensional if it is spanned by a finite set.

Definition 1.8 (Infinite dimensional)

Let V be an F-vector space. V is infinite dimensional if there is no family S with
finitely many elements which span V.

Example 1.9

Consider the set V' = P[z]| which is the set of polynomials on R. Further, consider
Vo, = P, [x] which is the subspace with degree less than or equal to n. Then V;, is
spanned by {1,z,22,...,2"}, so V, is finite-dimensional.

Conversely, V is infinite-dimensional; there is no finite set S such that (S) = V. The
proof is left as an exercise.

§1.7 Linear independence

Definition 1.9 (Linear independence)

We say that vy,...,v, € V are linearly independent or free, if, for \; € F,

Z)\ivizo — Vi,/\izo.

=1

Remark 3. Linear dependence implies 3 \; € F and j € [1,n]s.t. >i-; \iv; = 0 and
Aj # 0. This implies v; = _A%- > iz Aivi, i.e. one of the vectors can be written as a linear
combination of the remaining ones.

Remark 4. If (v;)1<i<p are linearly independent, then

Vie{l,...,n}v; 20

§1.8 Bases



Definition 1.10 (Basis)
S C V is abasis of V if

1L.(S)=V
2. Sis alinearly independent set

So, a basis is a linearly independent/free generating family.

Example 1.10

Let V = R". The canonical basis (e;) is a basis since we can show that they are free
and span V. Proof is left as an exercise.

Example 1.11

Let V' = C, considered as a C-vector space. Then {1} is a basis. If V' is a R-vector
space, {1,} is a basis.

Example 1.12
Consider again P[z], polys on R. Then S = {z": n > 0} is a basis of P.

Lemma 1.1 (Unique decomposition for everything equivalent to being a basis)

Let V be an F-vector space. Then, (v1, ..., v,) is abasis of V if and only if any vector
v € V has a unique decomposition

n
v="> Av, A\ €F
i=1

Remark 5. In the above definition, we call (A1,...,\,) the coordinates of v in the basis

(V1,...,0p).

Proof. Suppose (v1,...,vy,) is a basis of V. Then Vv € V there exists \q,..., A\, € F
such that

n
B = Z AiV;
=1

10



So there exists a tuple of A values. Suppose two such A tuples exist. Then

V= Z)\Z‘Ui = Z)\;UZ — Z()\Z = )\;)Uz =0 = \; = )\;
=1 =1 =1

since v; linearly independent. The converse is left as an exercise. O

Lemma 1.2 (Some subset of a spanning set is a basis)

If ({v1,...,v,}) =V, then some subset of this set is a basis of V.

Proof. If (v1,...,vy,) are linearly independent, this is a basis. Otherwise, one of the
vectors can be written as a linear combination of the others. So, up to reordering,

o € (o1, v}) = (one ) = (o, 001 )
= {v1,...,0p1}) =V

So we have removed a vector from this set and preserved the span. By induction,
we will eventually reach a basis. O

§1.9 Steinitz exchange lemma

Theorem 1.1 (Steinitz exchange lemma)
Let V be a finite dimensional F-vector space. Let (v, ..., vy, ) be linearly independ-
ent, and (wy, ..., wy,) span V. Then,

1. m < n;and

2. up to reordering, (v1, ..., Vm, W1, ... wy,) spans V.

Proof. Suppose that we have replaced ¢ > 0 of the w;.
(U1, oy Vg, Wei1, .. - Wp) =V

If m = ¢, we are done. Otherwise, ¢/ < m. Then, vy € V = (v1,..., 05, Wpi1,...Wy)
Hence vy;1 can be expressed as a linear combination of the generating set. Since
the (vi)1<i<m are linearly independent (free), one of the coefficients on the w; are
nonzero. In particular, up to reordering we can express w; as a linear combination
of vi,..., V041, Weta, ..., wy. Inductively, we may replace m of the w terms with v
terms. Since we have replaced m vectors, necessarily m < n. O

11



§1.10 Consequences of Steinitz exchange lemma

Corollary 1.1

Let V be a finite-dimensional F-vector space. Then, any two bases of V' have the
same number of vectors. This number is called the dimension of V, dimg V.

Proof. Suppose the two bases are (v1,...,vy,) and (wy, ..., wy,). Then, (vq,...,vy)
is free and (w1, ..., wy,) is generating, so the Steinitz exchange lemma shows that
n < m. Vice versa, m < n. Hence m = n. O
Corollary 1.2

Let V be an F-vector space with finite dimension n. Then,

1. Any independent set of vectors has at most n elements, with equality if and
only if it is a basis.

2. Any spanning set of vectors has at least n elements, with equality if and only
if it is a basis.

Proof. Exercise. O

§1.11 Dimensionality of sums

Proposition 1.6

Let V' be an F-vector space. Let U, W be subspaces of V. If U, W are finite-
dimensional, then so is U + W, with

dimF(U -+ W) =dimp U 4+ dimp W — dimF(U N W)

Proof. Consider a basis (v1, ... ,vy,) of the intersection. Extend this basis to a basis
(U1, ..y Un,y UL, .., Upy) Of U and (vy, ..., v, w1,. .., wg) of W. Then, we will show
that (v1,...,vn, U1, ..., Uy, w1,...,w) is a basis of dimp(U + W), which will con-
clude the proof. Indeed, since any component of U + W can be decomposed as a
sum of some element of U and some element of W, we can add their decomposi-
tions together. Now we must show that this new basis is free.

n m k
Z o;v; + Zﬁiui + Z'Yiwi =0
=1 i=1 =1

12



n m k
Z Qiv; + Z Biui = — Z YiWi
i=1 i=1 i=1

——
evu ew

k
Z’yiwi ceUnNW
i=1

k n
> viws = 6w
i=1 i=1
n

Z(ai + ;)vi + i Biu; =0

i=1 =1

Bi =0,a; = —6;
n k
> v+ > vw; =0
i=1 i=1

o = O,’)/i =0

Proposition 1.7

If V is a finite-dimensional F-vector space, and U < V, then U and V/U are also
finite-dimensional. In particular, dimp V' = dimp U + dimp(V/U).

Proof. Let (ui1,...,u;) be a basis of U. We extend this basis to a basis of V:
(Ui, ... U, Wet1, ..., wy). We claim that (wyi1 + U, ..., w, + U) is a basis of the
vector space V/U. O

Remark 6. 1f V' is an F-vector space, and U < V, then we say U is a proper subspace
if U # V. Then if U is proper, then dimp U < dimp V and dimp(V/U) > 0 because

(V/U) # 2.

§1.12 Direct sums

Definition 1.11

Let V be an F-vector space and U, W be subspaces of V. We say that V' = U® W, read
as the direct sum of U and W, if Vv € V,3lu € U, 3w € W, u + w = v. We say that
W is a direct complement of U in V; there is no uniqueness of such a complement.

13



Lemma 1.3

Let V' be an F-vector space, and U,W < V. Then the following statements are
equivalent.

1. Vv=UsW
2 V=U+WandUNnW = {0}
3. For any basis By of U and By of W, By U By is a basis of V/

Proof. First, we show that (ii) implies (i). If V' = U + W, then certainly Vv € V, Ju €
U, 3w € W,v = u+w, so it suffices to show uniqueness. Note, u; +w; = ug+wy =
u1 — uz = wy — wi. The left hand side is an element of U and the right hand side is
an element of W, so they must be the zero vector; u; = ug, w1 = wo.

Now, we show (i) implies (iii). Suppose B; is a basis of U and B, is a basis of V.
Let B = By U By. First, note that B is a generating family of U + W. Now we must
show that B is free.

Z Ayl + Z Apw =0

ueBy we By
—_———  N—/—
eU ew

Hence both sums must be zero. Since B7, By are bases, all A are zero, so B is free
and hence a basis.

Now it remains to show that (iii) implies (ii). We must show that V' = U + W
and U N W = {0}. Now, suppose v € V. Then, v = > 5 At + 3 cp, Aww. In
particular, V- = U + W, since the \,, \,, are arbitrary. Now, let v € U N W. Then

v= ) A= Y dpw = Ay =Ay =0
u€B] we By

Definition 1.12
Let V be an F-vector space, with subspaces V1,...,V, < V. Then

p
Z%:{Ula"'avéaviG%aléigg}
=1

14



We say the sum is direct, written

if the decomposition is unique. Equivalently,

P n
V:@V; <= 3!v1€V1,...,vneanv:Zvi
=1 i=1

Lemma 1.4

The following are equivalent:
LY Vi=®_, Vi
2.¥V1<i<lVin (zjﬂvj) = {0}
3. For any basis B; of V;, B = ;L B; is a basis of }_;"; V;.

Proof. Exercise.

15



§2 Linear maps

§2.1 Linear maps

Definition 2.1
If V, W are F-vector spaces, a map «: V — W is linear if

VA1, Ao € F\Vvi,v0 €V, oz()\lvl P )\2’02) = )\10&(’[)1) + )\20[(2}2)

Example 2.1
Let M be a matrix with n rows and m columns. Then the map «: R™ — R" defined
by x — Mz is a linear map.

Example 2.2
Let o: C([0,1], R) — C([0, 1], R) defined by f — a(f)(z) = [y f(t)dt. This is linear.

Example 2.3
Let z € [a,b]. Then a: C([a,b], R) — R defined by f — f(z) is a linear map.

Remark 7. Let U,V, W be F-vector spaces. Then,
1. The identity function iy, : V' — V defined by = — « is linear.

2. If a: U — V and 3: V — W are linear, then § o « is linear.

Lemma 2.1

Let V, W be F-vector spaces. Let B be a basis for V. If ag: B — W is any map (not
necessarily linear), then there exists a unique linear map «: V' — W extending ay:
Vv € B, ap(v) = a(v).

Proof. Letv € V. Then, given B = (v1,...,vp).

n
v = Z )\ivi
=1

16



By linearity,

a(’u) = a(z )\ivi> = Z )\ia(vi) = Z)\iao(vi)
=1 =1 =1

O

Remark 8. This lemma is also true in infinite-dimensional vector spaces. Often, to define
a linear map, we instead define its action on the basis vectors, and then we ‘extend by
linearity” to construct the entire map.

Remark 9. 1If o, c9: V' — W are linear maps, then if they agree on any basis of V' then
they are equal.

§2.2 Isomorphism

Definition 2.2 (Isomorphism)
Let V, W be F-vector spaces. A map a: V' — W is an isomorphism if and only if

1. «is linear
2. «ais bijective

If such an « exists, we say that V and W are isomorphic, written V' = W.
Remark 10. If « in the above definition is an isomorphism, then a~l: W = V is linear.
Indeed, if w1, w2 € W with w; = a(v1) and we = a(v2),
a N wy +w) = a Ha(vy) + a(v2) = a ta(vy + v2) = v1 +vo = o Hwy) + o Hws)
Similarly, for A € F,w € W,

ot Ow) = Ao H(w)

Lemma 2.2

Isomorphism is an equivalence relation on the class of all vector spaces over F.

Proof. 1. iy: V — V is an isomorphism
2. If a: V — W is an isomorphism, al: W = Visan isomorphism.

3. If : U — V,a: V. — W are isomorphisms, then oo : U — W is an iso-
morphism.

17



The proofs of each part are left as an exercise. O

Theorem 2.1
If V is an F-vector space of dimension n, then V' = F™.

Proof. Let B = (v1,...,vy) be abasis for V. Then, consider a.: V' — F™ defined by
V= Z /\i'Uz' — .
=1 )\n
We claim that this is an isomorphism. This is left as an exercise. O

Remark 11. Choosing a basis for V' is analogous to choosing an isomorphism from V' to
.

Theorem 2.2

Let V, W be F-vector spaces with finite dimensions n, m. Then,

VEW < n=m

Proof. If dimV = dim W = n, then there exist isomorphisms from both V" and W
to F'". By transitivity, therefore, there exists an isomorphism between V' and W'.

Conversely, if V' = W thenlet o: V' — W be an isomorphism. Let B be a basis of V,
then we claim that o(B) is a basis of W. Indeed, «(B) spans W from the surjectivity
of a, and a(B) is free due to injectivity. O

§2.3 Kernel and image

Definition 2.3

Let V, W be F-vector spaces. Let a: V' — W be a linear map. We define the kernel
and image as follows.

N(a) =kera={veV:a(v) =0}

Im(a) ={w e W: JveV,w=a(v)}

18



Lemma 2.3
ker cv is a subspace of V, and Im « is a subspace of W.
Proof. Let A1, A2 € F and vy, v2 € ker a. Then
a(A1v1 + Agv2) = Aja(v1) + Aear(v2) =0

Hence \jv1 + \avo € ker av.

Now, let A1, Ao € F,v1,v9 € V,and wy = a(vl),wg = 04(1)2). Then

AMwi + dqwy = Ala(vl) T )\2&(7)2) = a()\lvl = )\21}2) €Ima

O

Remark 12. o: V' — W is injective if and only if ker o = {0}. Further, a: V" — W is
surjective if and only if Ima = W.

Theorem 2.3

Let V, W be F-vector spaces. Let a: V' — W be a linear map. Then @: V/kera —
Im « defined by

(v + ker a) = a(v)

is an isomorphism. This is the isomorphism theorem from IA Groups.

Proof. First, note that @ is well defined. Suppose v + keraw = v’ + kera. Then
v — v’ € ker o, hence

alv—1)=0 = a)—-a(®)=0
so @ is indeed well defined.
Linearity of @ follows from linearity of c.
Now, we show @ is injective.
a(vt+kera) =0 = a(v) =0 = v €kera
Hence, v + ker @ = 0 + ker a.

Further, @ is surjective as if w € Im o, 3v € V s.t. w = a(v) = a(v + ker a). O

§2.4 Rank and nullity

19



Definition 2.4 (Rank and nullity)
The rank of « is

r(a) = dim Im a.
The nullity of « is

n(a) = dimker a.

Theorem 2.4 (Rank-nullity theorem)

Let U, V be F-vector spaces such that the dimension of U is finite. Let a«: U — V be
a linear map. Then,

dimU = r(a) + n(a)
Proof. We have proven that U/ ker o = Im «. Hence, the dimensions on the left and
right match: dim(U/ ker a) = dim Im cv.
dim U — dimker o = dim Im «

and the result follows. O

by proposition 1.7

Lemma 2.4 (Characterisation of isomorphisms)

Let V, W be F-vector spaces with equal, finite dimension. Let a«: V' — W be a linear
map. Then, the following are equivalent.

1. ais injective.
2. «ais surjective.

3. ais an isomorphism.

Proof. Clearly, (iii) follows from (i) and (ii) and vice versa. The rest of the proof is
left as an exercise, which follows from the rank-nullity theorem. O

Example 2.4
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V={lyl eR®:z4+y+2=0
z
a:R¥ =R
X
yl—x+y+=z
z

— kera=V
Ima =R.

So by rank nullity

3=n(a)+1 = dimV =2

§2.5 Space of linear maps

Let V and W be F-vector spaces. Consider the space of linear maps from V' to W. Then
L(V,W)={a: V — W linear}.

Proposition 2.1 (Linear maps form a vector space)

L(V,W) is an F-vector space under the operation

(a1 + az)(v) = a1 (v) + as(v)

1
(Aa)(v) = Ae(v))
Further, if V and W are finite-dimensional, then so is L(V, W) with

dimF L(Vv, W) = dimF VdimF w

Proof. Proving that L(V, W) is a vector space is left as an exercise. The dimension-
ality part is proven later, proposition 2.4. O

§2.6 Matrices

Definition 2.5 (Matrix)

An m x n matrix over F' is an array with m rows and n columns, with entries in F'.

Notation. We write M,,x,(F) for the set of m x n matrices over F.
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Proposition 2.2

My xn(F) is an F-vector space under
((aiz) + (bi5)) = (aij + bij);
AMaij) = (Aaij)

Proof. Left as an exercise O

Proposition 2.3
dimp My, n(F) = mn.

Proof. Consider the basis defined by, the ‘elementary matrix” for all 7, j:
epg = dipdjq

Then (e;;) is a basis of My, (F), since it spans M, x»(F)" and we can show that it
is free. O

“given A= (aij) € Mnxn(F), A= aijeij

§2.7 Linear maps as matrices

Let V, W be F-vector spaces and « : V' — W be a linear map. Consider bases B of V'
and C of W:

B=(v1,...,0p); C = (wi,..., W)
Then let v € V. We have

n AL
v:Z)\jvjE[v]B: Sl er”
J=1 A

where the vector given is the coordinates in basis B.
Notation. [v]p is the coordinates of v in basis B.

We can equivalently find [w]c, the coordinates of w in basis C. We can now define a
matrix of some linear map « in the B, C basis.
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Definition 2.6 (Matrix of linear map)
The matrix representing o wrt B, C basis is

o], = (lo@D]es -+ [@(va)lc) € Mmxn(F)
Note. Let [o]p,c = (ai;), then by definition

m
’UJ) = Z aijwi
=1

Lemma 2.5
Forallv e V,

la(v)]le = [o]p.c - [v]B
Proof. We have
v = i )\jvj
i=1

Hence

j:l i=1 \j=1

Lemma 2.6
Let 8: U — V and a: V. — W be linear maps. Then, if A, B, C are bases of U, V, W
respectively, then

o Blac = o]l [Blas

Proof. Let A = [a]p,c and B = [5]4,p. Consider u; € A (basis of U). Then

(o B)(u) = a(B(ur))
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giving
a (z bjwj) = 3 baley) = Xba D agui= Y (z b) w
J J J i i J

where a;;bj; is the (i,) element of AB by the definition of the product of matrices.
Ul

Proposition 2.4

If V, W are F-vector spaces, and dimp V' = n,dimp W = m, then
L(V, W) = Mpyxn(F)

which implies the dimensionality of L(V, W) in F is m x n.

Proof. Consider two bases B, C of V, W. We claim that

0: L(V,W) = Muysn(F)
o [Oz]B’C
is an isomorphism.

First, note that 0 is linear.

[Aa1 + Aae] = Ai[ai]B,c + A2]as]B,c.

Also, 0 is surjective; consider any matrix A = (a;;) and consider a: v; — Y%, a;w;
defined on B. Then this is certainly a linear map which extends uniquely by linear-
ity to A, giving [ p,c = (a;;) = A”.

Now, 6 is injective since [o]pc =0 = a =0. O

"Proving this left as an exercise

Remark 13. If B, C are bases of V, W respectively,and ep: V — F™isdefined by v — [v]p,
and analogously for e¢, then the following diagram commutes

V ——— W
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We can see that
[alpcoep=¢ccoa

so the operations commute.

Example 2.5

Let a: V. — W be a linear map and Y < V, where V, W are finite-dimensional.
Then let a(Y) = Z < W. Consider a basis B of V, such that B’ = (vy,...,v;) is a
basis of Y completed by B” = (vi+1,...,v,) into B = B’UB". Then let C be a basis
of W, such that C' = (wy, ..., wy) is a basis of Z completed by C" = (w41, ..., wn)
into C = C"UC”. Then

alpe = (a@) ... a@) alvka) .. a(v))

Forl <i <k, a(v;) € Zsincev; € Y,a(Y) = Z. So the matrix has an upper-left £ x k
block A whichis a: Y — Z on the basis B’, C’. We can show further that o induces
amapa: V/Y - W/Zbyv+Y — a(v) + Z. This is well-defined; v; +Y = vy +Y
implies v; — v2 € Y hence a(v; — v2) € Z as required. The bottom-right block is
@l oo

§2.8 Change of basis

Suppose we have two bases B = {v1,...,v,}, B’ = {v],...,v],} of V and corresponding
C,C" for W. If we have a linear map [o] g ¢, we are interested in finding the components
of this linear map in another basis, that is,

[alp,c = [alp o

Definition 2.7 (Change of basis matrix)

The change of basis matrix P from B’ to B is

which is the identity map in B’, written

P=[Ipp
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Lemma 2.7

For a vector v,

Proof. We have
[a(v)le = [a]B,c - [v]e
Since P = [I] 5,
[I(v)]ls =]p,p-lvlp = [v]s = Pl|p

as required.

Remark 14. P is an invertible n x n square matrix. In particular,
Pl = [I]B,B’
Indeed,

(o Blac = lalsclBlas
— In = [I~ I]B,B = [I]B’,B . [I]B,B’

where I, is the n x n identity matrix.

Warning 2.1

P = (["Ui]Ba 000 [U;L]B)
= [v]p = P[v]p
= [v]p =P '[v]p

Proposition 2.5
If v is a linear map from V to W, and P = [I]p/ g, @ = [I|c’ ", we have

A' =[d]p o = e lalpell]lpp =Q AP

where A = [a]pc, A = [a] B .

“P, Q invertible.
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Proof.

[a(v)]e = Qla(v)]er
= Qlelp o v]p
[a(v)lc = [a]Bclvls
= AP[v]p
Yo, QA/[U]B/ = AP[’U]B/
QA" = AP
as required. O

§2.9 Equivalent matrices

Definition 2.8 (Equivalent matrices)
Matrices A, A’ € My, »,(F) are called equivalent if

A =QAP

for some invertible m x m,n x n matrices @, P.

Remark 15. This defines an equivalence relation on M,, ,,(F).
o A=1I_1AL,;
e A/ =Q AP — A=QAP;
o A/'=Q AP A" = (Q") AP = A" =(QQ")'A(PP).

Proposition 2.6

Let V, W be vector spaces over F' with dimp V = n, dimp W = m. Leta: V. — W
be a linear map. Then there exists a basis B of V' and a basis C' of W such that

o]0 = ({;" 8)

so the components of the matrix are exactly the identity matrix of size r in the top-
left corner, and zeroes everywhere else.

Proof. We first fix r € N such that dim ker « = n — r. Then we will construct a basis
{vr41,..., v} of the kernel. We extend this to a basis of the entirety of V, that is,
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{v1,...,v,}. Then, we want to show that

{a(v1),...,a(v)}
is a basis of Im «. Indeed, it is a generating family:
v = Z )\ivi
i=1
a(v) = Nia(v;)
i=1

.
= Z Aia(v;) as vp4; € ker a

=1

Then if y € Im «, there exists v such that a(v) = y. So
y = il)\ia(vi) € (a(v1),...,a(v)).
Further, it is a free family:
Zr: Aia(v;) =0
i=1

(0% (Z )\ivi> =0
=1

T
Z \;v; € ker o
i=1
n

T
Z AiV; = Z A;v; as v,y is a basis of ker a.
i=1

i=r+1

Z/\ivi — Z )\ﬂ)i =0

i=1 i=r+1
But since {v1,...,v,} is a basis, A; = 0 for all 4.
Hence {a(v1),...,a(v,)} is a basis of Im a. Now, we extend this basis to the whole
of W to form

{a(v1),...,a(vp), Wpy1, ..., Wy}
Now,
[opo = (a(vr) -+ a(v) alver) - a(va))

28



0

Remark 16. This also proves the rank-nullity theorem:

ranka +nullae =n

Corollary 2.1

Any m x n matrix A is equivalent to a matrix of the form

(5 5)

where r = rank A.

§2.10 Column rank and row rank

Definition 2.9 (Column rank)

Let A* € M,, »,(F). Then, the column rank of A, here denoted r.(A), is the dimen-
sion of the subspace of F" spanned by the column vectors.

re(A) = dimspan {ci,...,c,}

"A=(c1| - |cn), cn € F™.

Definition 2.10 (Row rank)

The row rank is the column rank of AT.

Remark 17. If c is a linear map, represented by A with respect to some basis, then:

rank @ = r.(A) = dimIm «

Proof. Proof of rank a = r.(A) is left as an exercise. O

Proposition 2.7
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Two matrices are equivalent if they have the same column rank:

ro(A) = re(A').

Proof. ( = ) If the matrices are equivalent, then they correspond to the same linear
map « in two different basis

re(A) = rank «
ro(A4’) = rank
= 1.(A) =7.(A)

(<) Conversely, if r.(A) = r.(A’) = r, then A, A are equivalent to
I, 0
0 0
By transitivity, A, A’ are equivalent. O

Theorem 2.5

Column rank r.(A) and row rank r.(AT) are equivalent.

Proof. Letr =1r.(A). Then,
14p_ (Ir O

(7' AP)T = PTAT(Q7!)'
= PTAT(Q")™

(5 o\" (I, 0
—\o o —lo o
mXxXn nxm

Note. We can swap the transpose and inverse on () because

Then take the transpose:

Then r.(AT) = r = r.(A).

(AB)T = BTAT
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O

So we can drop the concepts of column and row rank, and just talk about rank as a
whole.

§2.11 Conjugation and similarity

Consider the following special case of changing basis.

Definition 2.11

If a: V — V is linear, « is called an endomorphism.

If B = C, B’ = (' then the special case of the change of basis formula is

la]p g = P [a]p P

Definition 2.12 (Similar matrices)

Let A, A’ be n x n (square) matrices. We say that A and A’ are similar or conjugate
iff there exists P (n x n square invertible matrix) such that A’ = P~1AP.

This is a central concept when we will study diagonalisation of matrices, Spectral the-
ory.

§2.12 Elementary operations

Definition 2.13 (Elementary column operation)

An elementary column operation is
1. swap columns ¢,j (i # j)
2. replace column ¢ by A multiplied by the column (A # 0,\ € F)
3. add A multiplied by column ¢ to column j (i # j5)
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We define analogously the elementary row operations. Note that these elementary oper-
ations are invertible (for A # 0). These operations can be realised through the action of
elementary matrices. For instance, the column swap operation can be realised using

I,y 0 0 0 01
Tij=1 0 A O0f; A=|0 T 0
0 0 I 1 01
To multiply a column by A,
I,y 00
niy)\— 0 A0
0 0 I

To add a multiple of a column,
Cij\ = I+ )‘EU
where E;; is the matrix defined by elements (e;;)pq = 6:pd;q-

An elementary column (or row) operation can be performed by multiplying A by
the corresponding elementary matrix from the right (on the left for row opera-
tions).

Proof. Left as an exercise. O

96 )-Cs)

We can prove corollary 2.1 constructively:

Example 2.6

Proof. This will essentially provide a constructive proof that any m x n matrix is
equivalent to

I, 0

0 0/

We will start with a matrix A. If all entries are zero, we are done.

So we will pick a;; = A # 0, and swap rows 7, 1 and columns j, 1. This ensures that
ajl] = A 7é 0.

Now we multiply column 1 by 1 so a1; = 1 now.

Finally, we can clear out row 1 and column 1 by subtracting multiples of rows or
columns (3rd elementary operation). Then we can perform similar operations on
the (m — 1) x (n — 1) matrix in the bottom right block and inductively finish this
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process. We end up with:

(L’ )\« ... B, 4 E . E
—_——

0 0 2 5
row operations ~ column operations

= QAP

§2.13 Gauss’ pivot algorithm

If only row operations are used, we can reach the row echelon form of the matrix, a
specific case of an upper triangular matrix.

o ... 0 1 ...
0 ... ... ... 1...

o ... ... ... ... 0

On each row, there are a number of zeroes until there is a one, called the pivot.

First, we assume that a;; # 0.

We swap rows i, 1.

Then divide the first row by A = a;; to get a one in the top left.
We can use this one to clear the rest of the first column.

Then, we can repeat on the next column, and iterate.

This is a technique for solving a linear system of equations.

§2.14 Representation of square invertible matrices

Lemma 2.8

If Ais ann x n square invertible matrix, then we can obtain /,, using only row ele-
mentary operations, or only column elementary operations.

Proof. We show an algorithm that constructs this I,,. This is exactly going to invert
the matrix, since the resultant operations can be combined to get the inverse matrix.
We will show here the proof for column operations.

We argue by induction on the number of rows.
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Suppose we can make the form

T

We want to obtain the same structure with & + 1 rows.

We claim that there exists j > k such that a;,1; # 0. Indeed, otherwise we can
show that the vector

1] = 0kt1,
0
is not in the span of the column vectors of A.” This contradicts the invertibility of

the matrix.

Now, we will swap columns k + 1, j and divide this column by A\. We can now use
this 1 to clear the rest of the k 4 1 row using elementary operations of type 3.

The desired results follows from induction. O

“Left as an exercise to check this.

Remark 18. Inductively, we have found AF; ... E. = I,, where E, are elementary. Thus,
A=l = FBy, ... E. and so this is an algorithm for computing A~! and so solving linear
systems of equations.

Proposition 2.8

Any invertible square matrix is a product of elementary matrices.

Proof. The proof is exactly the proof of the lemma above. O
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§3 Dual spaces

§3.1 Dual spaces

Definition 3.1 (Dual Space)
Let V be an F-vector space. Then V* is the dual of V, defined by

V*=L(V,F) ={a: V - F}

where the « are linear.
If «: V' — F is linear, then we say « is a linear form. So the dual of V' is the set of

linear forms on V.

Example 3.1

For instance, the trace tr: M, ,(F') — F is a linear form on M, ,(F). So tr €
My (F)

Example 3.2
Consider functions f : [0,1] — R. We can define T: C*°([0, 1],R) — R such that

o Jo f(@)p(e)dz. Le. Ty(p) = [y f@)p(z) de.

Then T is a linear form on C*°([0, 1], R) (R vector space).

The function defines a linear form. We can then reconstruct f given T';. This math-
ematical formulation is called distribution (which is about the generalisation of the

notion of functions).

Remark 19. Duality is not that useful in finite dimensions but it is in infinite.

Lemma 3.1 (Dual Basis)

Let V be an F-vector space with a finite basis B = {ey, ..., e, }. Then there exists a
basis B* for V* given by

n
B* :{517'--)577,}; 5ja (Zai€i> :CL]'
=1

We call B* the dual basis for B.

"Recall ¢; is a linear form
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Remark 20. Kronecker symbol, d;;.
gj (Z aiei> =a; <= 5]-(61-) = 52'3'
i=1

Proof. Let
ejei) = di

First, we will show that the set of linear forms as defined is free. For all ¢,

Now we show that the set spans V*. Suppose o € V*, z € V.

@ (En: )\jej)

a(z)

Conversely, we can write

Thus,

i=1 j=1 k=1
= ale)) Y Mejler)
j=1 k=1




=l =1
= Z a(e;)A;
j=1
= a(z)
We have then shown that
o= Z a(e;)e;
j=1
as required. ]
Corollary 3.1

If V is finite-dimensional, V* has the same dimension.”

"Very different in infinite dimension.

Remark 21. It is sometimes convenient to think of V* as the spaces of row vectors of
length dim V' over F'. For instance, consider the basis B = (e1,...,e,), 50z = Y " x;€;.
Then we can pick (e1,...,&,) abasis of V*,s0 a = 31" ; a;e;. Then

n n n n
a(z) = Z aigi(z) = Z e (Z mjej) = Z oG T
=1 i=1 j=1 i=1

This is exactly

I

(o1 - a)

which essentially defines a scalar product between the two spaces.

Tn

§3.2 Annihilators

Definition 3.2 (Annihilator)
Let U < V. Then the annihilator of U is

U% ={acV*: YucU,a(u) =0}
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Lemma 3.2 1. U< V™
2. IfU <V and dimV < oo, then dimV = dim U + dim U°.

Proof. 1. First, note that 0 € U°. If o, o/ € U?, then for all u € U,
(a+d)(u) = a(u) +a'(u) =0
Further, forall A € F,
(M) (u) = Aa(u) =0

Hence U° < V*.

2. LetU < Vand dimV = n. Let (eq, ..., ex) be a basis of U, completed into a
basis B = (e1,..., €k, €kt1,-..,6n) of V. Let (¢1,...,e,) be the dual basis B*.
We then will prove that

UO = <€k+1, 000 ,€n>

Pick i > k, then g;(ej) = 6;; = Ofor 1 < j < k. Hencee¢; € UY% Thus
(€ka1,---,En) C U

Conversely, leta € U%. Thena = Y | cie;. Fori < k, a € U’ hence a(e;) = 0
for 1 < i < k. Hence,

n
o = Z ;&5
i=k+1
Thus

o€ <5k+1" "75n>

soU® C (er41,...,6n) as required.

§3.3 Dual maps

Lemma 3.3 (Dual Map)

Let V, W be F-vector spaces. Let o € L(V,W). Then there exists a unique a* €
L(W=*, V™)

WX 5 V*

EEOow
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called the dual map.

Proof. First, note e(c): V' — F'is a linear map. Hence, c o v € V'*.
Now we must show o* is linear.

a*(01+62) = (01 +62) () =b10oa+ 030 =a*(61) + a*(02)
Similarly, we can show
a*(N0) = ()

as required. Hence a* € L(W*, V*). O

Proposition 3.1

Let V, W be finite-dimensional F-vector spaces with bases B, C respectively. Let
B*, C* be the dual basis of V*, W*. Then

[a*les B = [elp o

Thus, we can think of the dual map as the adjoint of a.

Proof. This follows from the definition of the dual map. Let B = (by,...,b,), C =

(c1y.-yem), B* = (B1,--.,Bn), C* = (71,-..,Ym)- Let [a]pc = (as;). Recall o :
W* — V*. Then, we compute

a*(7)(bs) = v oa(bs)
— ——
ew* ew

o)

sth column vector

= Z atsyr(ct)
t

= Z 50ty
t

= Qpg

We can conversely write [o*]c+ g« = (m;;) and

o* () =D mabi
=1
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Thus,

QArg = Mgy

as required.

§3.4 Properties of the dual map

Leta € L(V,W),and a* € L(W*,V*). Let B and C be bases of V, W respectively, and
B*, C* be their duals. We have proven that

le]B.o = [@’]E p-

Lemma 3.4
Suppose that E = (e1,...,ey) and F = (fi,..., fn) arebases of V. Let P = [I]r i be
a change of basis matrix from F' to E. The bases E* = (e1,...,&p), F* = (m,...,1n)

are the corresponding dual bases.
Then, the change of basis matrix from F™* to E* is

Proof. Consider

Lemma 3.5
Let V, W be F-vector spaces. Let a € L(V,W). Let o* € L(W™*,V*) be the corres-
ponding dual map. Then, denoting N («) for the kernel of ¢,

1. N(a*) = (Ima)%, so o* is injective if and only if « is surjective.

2. Ima* < (N(«))?, with equality if V, W are finite-dimensional. In this finite-
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dimensional case, a* is surjective if and only if « is injective.

“The annihilator of Im «

Remark 22. This is a fundamental property.
In many applications (especially in infinite dimensions) e.g. controllability, it is often
simpler to understand the dual map «o* than it is to understand «.

Proof. First, we prove (i). Lete € W*. Then, ¢ € N(a*) <= «*(¢) = 0. Hence,
a*(e) =eoa =0. So forany v € V, e(a(v)) = 0. Equivalently, ¢ is an element of
the annihilator of Im «.

Now, we will show (ii). Let ¢ € Ima*. Then a*(¢) = ¢ for some ¢ € W*. Then,
forall u € N(a), e(u) = (a*(¢))(u) = ¢ o a(u) = p(a(u)) = 0. Certainly then
e € (N(a))’. Then, Imo* < (N(a))°.

In the finite-dimensional case, we can compare the dimension of these two spaces.

dimIm o = r(a*) = r([a*]|c+B*) = T([O‘HB,C) =r([a)p,c) =r(a) =dimIma

Due to the rank-nullity theorem, dimImo* = dimIma = dimV — dim N(a) =
dim [(N())°] by lemma 3.2. Hence,

Ima* < (N(a))? dimIma* = dim(N(a))°

The dimensions are equal, and one is a subspace of the other, hence the spaces are
equal. O

§3.5 Double duals

Definition 3.3 (Double Dual)

Let V be an F-vector space. Let V* be the dual of V. The double dual or bidual of
Vis

V*=L(V*F)= (V)
Remark 23. This is a very important space in infinite dimensions.

In general, there is no obvious relation between V' and V* (unless Hilbertian structure).
However, the following useful facts hold about V' and V**.

1. There is a large class of function spaces where V' = V**. These are called reflexive
spaces.
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Example 3.3
p>r, LP(R) = {f:R—=R: [p|f(z)]Pdz < +oo}. This is a reflexive space
(this uses the Lebesgue integral as this space is not complete using Riemann
integral.)

Such spaces are investigated in the study of Banach spaces.

2. There is a canonical embedding from V to V**. In particular, there exists ¢ in
L(V,V**) which is injective.

Theorem 3.1
V embeds into V**.

Proof. Choose a vector v € V and define the linear form ¢ € L(V*, F') such that

We want to show o € V**. If ¢ € V*,¢(v) € F. Further, \;,\2 € Fand g1,e2 € V*
give

17()\161 + )\252) = ()\161 + )\252)(1)) = )\161(’0) + )\252(11) = )\1’5(61) + )\2@(52)

Theorem 3.2

If V is a finite-dimensional vector space over F, theni: V — V** given by i(v) = ©
is an isomorphism”.

“In infinite dimension, we can show under canonical assumptions (Banach space) that this is an
injection.

Proof. We will show i is linear. If v1,v2 € V, A1, Ay € F,e € V*, then
z'(/\wl -+ )\21)2)(8) = 6()\1'01 + )\21)2) = /\18(1)1) + AQ@(UQ) = )\1@1(8) + )\2@2(8).

Now, we will show that i is injective for finite-dimensional V. Lete € V \ {0}.
We will show that e ¢ keri. We extend e into a basis (e, ea, ..., e,) of V. Now, let
(e,€9,...,ey) be the dual basis. Then é(¢) = ¢(e) = 1. In particular, é # 0. Hence
keri = {0}, so it is injective.

We now show that i is an isomorphism. We need to simply compute the dimension
of the image under . Certainly, dim V' = dim V* = dim(V*)* = dim V**. Since ¢ is
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injective, dim V' = dim V**. So i is surjective as required. O

Lemma 3.6

Let V' be a finite-dimensional F-vector space. Let U < V. Then,
ﬁ'ﬂ — UOO

After identifying V' and V**, we typically say
U=0%

although this is is incorrect notation and not an equality (but an isomorphism).

“Image of U under ¢ map

Proof. We will show that U < U, Indeed, let u € U, then by definition
Ve e U%e(u) =0 = di(e) =0

Hence 4 € U and so U < U,

Now, we will compute dimension: dimU» = dimV — dimU® = dimU. Since
U =2 U, their dimensions are the same, so U = U. O

Remark 24. Due to this identification of V** and V, we can define

T<VST'={veV:V¥9ecT,0v) =0}

Lemma 3.7

Let V be a finite-dimensional F-vector space. Let U1, U; be subspaces of V. Then
1. (U + ) =U9NUY;
2. (U NUL)° =UY +UY

PT’OOf. Letd € V*. Then 0 € (Ul + UQ)O < Yuy € Uj,us € U2,0(u1 + U2) =0. Iff

0(u) = 0 for all u € Uy U Uy by linearity. Iff € UY N UY.

Now, take the annihilator of (i) and U = U to complete part (ii). O
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§4 Bilinear Forms

§4.1 Introduction

Definition 4.1 (Bilinear Forms)

Let U,V be F-vector spaces. Then ¢: U x V' — F'is a bilinear form if it is ‘linear in
both components’. For example, ¢ at a fixed v € U is a linear form V' — F and an
element of V*; and ¢ at a fixed v € V is a linear form U — F' and an element of U*

Example 4.1
Consider the map V' x V* — F given by

(v,0) = 0(v).

You can check this is a bilinear map.

Example 4.2 (Scalar Product)
The scalar product on U = V' = R" is given by

¥ :R" xR* - R

n
(z,y) = > ziyi

i=1

You can check this is a bilinear map.

Example 4.3
LetU =V = C([0,1],R) and consider

o9 = [ F0at0ar

You can check this is a bilinear map.

Definition 4.2 (Matrix of a bilinear form in a basis)
IfB=(e1,...,em)isabasisof Uand C = (fi,..., fn)isabasisof V,and ¢: UxV —
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F'is a bilinear form, then the matrix of the bilinear form in this basis is

[¢lB,c = | wles fi)
———

er 1<i<m,1<j<n

Lemma 4.1

We can link ¢ with its matrix in a given basis as follows.

p(u,v) = [u]gle]Bclvlc

Proof. Letu = 371" Aie; and v = 377 p; f;. Then by linearity:

o(u,v) = ¢ (i A, zn:wfj) = i Zn: Aitjp(es, fi) = [u]plels.clvle-
i=1 j=1

i=1j=1

Check these equality signs are correct. O

Remark 25. Note that [] g ¢ is the only matrix such that ¢(u,v) = [u]5[¢] B c[v]c.

)

Definition 4.3

Let p: U x V — F be a bilinear form. Then ¢ induces two linear maps given by the
partial application of a single parameter to the function.

or: U=V pp(u): V—=F; v po(u,v)

or: V—=>US wr():U—=F; u— p(u,v)

In particular,

Lemma 4.2

Let B = (ey,...,en) be a basis of U, and let B* = (e1,...,&y) be its dual; and let
C=(f1,...,fn)beabasisof V,and let C* = (11, ...,n,) beits dual. Let A = [¢]|p c.
Then

lerle,Bx = A;  |eLlBcor = AT
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Proof.
pr(ei)(f;) = plei, f3) = Aij

Since 7); is the dual of f;,
prle) =) Ay
Further,

or(fi)(e:) = ¢lei, fj) = Ay

and then similarly

er(f;) = Z Aijei

Definition 4.4 (Left/ Right Kernel)
ker ¢y, is called the left kernel of . ker ¢, is the right kernel of ¢.

Definition 4.5 (Degenerate/ Non-Degenerate Bilinear Form)

We say that ¢ is non-degenerate if ker 7, = ker o = {0}. Otherwise, ¢ is degen-
erate.

Lemma 4.3

Let B be a basis of U, and let C be a basis of V, where U, V are finite-dimensional.
Let ¢: U x V — F be a bilinear form. Let A = [¢]p c.
Then, ¢ is non-degenerate if and only if A is invertible.

Corollary 4.1
If ¢ is non-degenerate, then dim U = dim V.

Proof. Suppose ¢ is non-degenerate. Then ker ¢, = kerpr = {0}. This is equi-
valent to saying that n(¢r) = n(¢r) = 0. We can use the rank-nullity theorem to
state that r(AT) = dim U and r(A) = dim V. This is equivalent to saying that A is
invertible. Note that this forces dim U = dim V as r(AT) = r(A). O
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Remark 26. The canonical example of a non-degenerate bilinear form is the scalar
product R” x R™ — R represented by the identity matrix in the standard basis'.

Corollary 4.2

If U and V' are finite-dimensional with dimU = dimV, then choosing a non-
degenerate bilinear form ¢: U x V' — F is equivalent to choosing an isomorphism
or: U — V™

Definition 4.6 (Orthogonals)
If T C U, then we define

T+ ={veV:VteT, otv)=0}"
Further, if S C V, we define
1S ={uecU:VseS ou,s)=0}

These are called the orthogonals of 7"and S.

o: (U, V) — F.

§4.2 Change of basis for bilinear forms

Proposition 4.1 (Change of basis for bilinear forms)

Let B, B’ be bases of U and P = [I]p/ p,let C,C’" be bases of V and @ = [I|¢ ¢, and
finally let ¢: U x V' — F be a bilinear form. Then

[¢lB,cr = PTo]B,c@Q

Proof. We have ¢(u,v) = [u]5[¢]B,c[v]c. Changing coordinates, we have

o(u,v) = (Plulp)T¢]B,c(Q]c) = [u]5 (PT[¢]B,cQ)[v]c"

“There is only one matrix A s.t. ¢(u,v) = [u]}, A[v]c, see earlier remark.

Lemma 4.4
The rank of a bilinear form ¢, denoted r(y) is the rank of any matrix representing

p)p,B = I where B the standard bases as (e;, ;) = 6;;
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. This quantity is well-defined.

Proof. For any invertible matrices P, Q, r(PTAQ) = r(A). O

Remark 27. r(¢) = r(¢r) = r(¢r), since r(A) = r(AT).

We will see more applications later in the course, especially when we see scalar
products.
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§5 Determinant and Traces

§5.1 Trace

Definition 5.1 (Trace)
The trace of a square matrix A € M,, ,,(F') = M, (F) is defined by

trA = Z A
=1

Remark 28.

M, (F) = F
A—trA

The trace is a linear form.

Lemma 5.1
tr(AB) = tr(BA) for any matrices A, B € M,,(F).

Proof. We have

n n n n

tl“(AB) = Z ' aijbji = Z ijiaij = tr(BA)

i=1 j=1 j=1li=1

Corollary 5.1

Similar matrices have the same trace.

Proof.

tr(P—lAP) — tr(AP_1P> —trA

Definition 5.2 (Trace of a linear)

If a: V — V is linear, we can define the trace of o as

tro = trjalg
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for any basis B. This is well-defined by the corollary above.

Lemma 5.2
If «: V — Vislinear, o*: V* — V* satisfies

tra = tra*

Proof.

“Check tr[a]; = tr[a]}

§5.2 Permutations and transpositions

Recall the following facts about permutations and transpositions. S, is the group of
permutations of the set {1,...,n}; the group of bijections ¢: {1,...,n} — {1,...,n}.
A transposition 7,y = (k, /) is defined by k — ¢, — k,z +— z for x # k,{. Any per-
mutation ¢ can be decomposed as a product of transpositions. This decomposition is
not necessarily unique, but the parity of the number of transpositions is well-defined.
We say that the signature of a permutation, denoted ¢: S,, — {—1,1}, is 1 if the de-
composition has even parity and —1 if it has odd parity. We can then show that ¢ is a
homomorphism.

§5.3 Determinant

Definition 5.3 (Determinant)
Let A € M, (F'). We define

det A = Z E(U)Aa(l)l .. 'Aa(n)n
0€Sn

Example 5.1
Let n = 2. Then,

ailp a2
A= — det A = a11a29 — 12021
az; a2
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Lemma 5.3

If A = (a;;) is an upper (or lower) triangular matrix (with zeroes on the diagonal),
then det A = 0.

Proof. Let (ai;) = 0 fori > j. Then

det A = Z 8(0’)(10(1)1 - Ao(n)n
oESH

For the summand to be nonzero, o(j) < j for all j. Thus,

detA=ai1...an, =0

O
M *
Exercise 5.1. Show similarly det =TT A
0 An
Lemma 5.4
Let A € M, (F). Then, det A = det AT.
Proof.
det A = Z a(a)aa(l)l ces ag(n)n
UESn
= Z e(o) H aiz-1(j) as o abijection”
o€Sn i
= Y el H][ew10
oc—les, %
= Z (o) H ais(;) s o abijection
oESy %
=det AT
O
"See V&M notes for better explanation.

§5.4 Volume forms

Why do we use this formula for det A?
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Definition 5.4 (Volume Form)
A volume form d on F" is a function d: F" x --- x F" — F satisfying
—_——

n times
1. dis multilinear: foralli € {1,...,n}and forall vy, ..., v;—1,vi41,...,0, € F",
the map from F" to F' defined by
V= (’Ul, ey Vi1,V V41, .- - ,Un)

is linear. In other words, this map is an element of (£)*.
2. dis alternating: if v; = v; for some ¢ # j, d = 0.

So an alternating multilinear form is a volume form.

"Linear with respect to all n coordinates.

Aim: We want to show that there is in fact only ONE (up to a multiplicative constant)
volume form on F™ x --- x F™ which is given by the determinant.

Lemma 5.5

The map (F")" — F defined by (A1), ... A(™) i det A is a volume form. This
map is the determinant of A, but thought of as acting on the column vectors of A.

Proof. We first show that this map is multilinear. Fix ¢ € S,, and consider
[TiZ1 @o(iyi- This product contains exactly one term in each column of A. Thus, the
map (A AM)Y) s [T, A (i); is multilinear. This then clearly implies that the
determinant, a sum of such multilinear maps, is itself multilinear.

Now, we show that the determinant is alternating. Let & # ¢, and AR = A0 1
want to show det A = 0.

Let 7 = (k ¢) be the transposition exchanging k and /. Then, forall 7,5 € {1,...,n},
aij = air(j)- We can decompose permutations into two disjoint sets: S, = A,UT A",
where A, is the alternating group of order n.

det A = Z (o) H Qio(s)
i=1

oESH

= Z 5(0)Haia(i)+ Z 5(0’)Haw(i)
o€A, i=1 ocETAR i=1

= > [Taiww = 2 I
0CAn i=1 o€A, i=1
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= > awwy— X ITaws asay=aimg

0€A, i=1 0€A, i=1
=0

So the determinant is alternating, and hence a volume form.

"As T bijective and ¢(1) = —1

Lemma 5.6
Let d be a volume form. Then, swapping two entries changes the sign.

Proof. Take the sum of these two results:

A1,y Uiy ey Ugy ey Un) FdA(V1, .0,V Vs, e, Un)
=d(v1,...,V,...,Vj,...,Un)
+d(vi,. .3V, Vi e, Un)
+Id(v1, Uiy e vy Ui, ,vn)l

0
—|—Id(v1,. , Vg, ,vj,vn)l
0

as required.

Corollary 5.2
If o € S, and d is a volume form, d(vy(1, - - -, Vo(n)) = €(0)d(v1, - - ., Vp).

Proof. We can decompose o as a product of transpositions []?'?; e;.

Theorem 5.2
Let d be a volume form on F". Let A be a matrix whose columns are A®. Then

d(AW,..., AW) = det A - d(e1, ..., en)

So there is a unique volume form up to a constant multiple.
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Proof.
d(A®,..., A™) = d(Z ainei AD, .. ,A(")>
i=1
Since d is multilinear,
d(A(1)7 c 7A(n)) = iaﬂd(ei, A(z), . ,A("))
i=1

Inductively on all columns,

n n

d(AW, .. A =33 Giland(€i7 ej, A®, .. aA(n)>

i=1j=1

= Z Haikkd(eil,---ein)

1<ii<n k=1
1<in<n

Since d is alternating, we know that for d(e;, , . .., e;,) to be nonzero, the i;, must be
different, so this corresponds to a permutation o € .S,,.

d(AW, ... AM)Y = S T aowre(o)dlen, - . . en)

ocESn k=1

which is exactly the determinant up to a constant multiple. O

Corollary 5.3
We can then see that det A is the only volume form such that d(es, ..., e,) = 1.

§5.5 Multiplicative property of determinant

Lemma 5.7
Let A, B € M,,(F). Then det(AB) = det(A) det(B).

Proof. Given A, we define the volume form d4: (F™)" — F by

da(vi,...,vn) — det(Avy, ..., Avy)
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v; — Aw; is linear, and the determinant is multilinear, so d 4 is multilinear. If ¢ # j
and v; = vj, then det(..., Av;,..., Avj;,...) = 050 d4 is alternating. Hence d4 is a
volume form.

Hence there exists a constant C'4 such that d4(vy,...,v,) = Cadet(vy,...,v,). We
can compute Cy by considering the basis vectors; Ae; = A; where A; is the ith
column vector of A. Then,

Ca=dy(er,... e,) =det(4ey,...,Ae,) =det A
Hence,

det(AB) = du(By,...,By) = det Adet B

§5.6 Singular and non-singular matrices

Definition 5.5 (Singular)
Let A € M, (F). We say that

1. Ais singularif det A = 0;
2. Ais non-singular if det A # 0.

Lemma 5.8

If A is invertible, it is non-singular.

Proof. If A is invertible, there exists AL

det (AA—l) —detl =1

Thus det A det A~ = 1 and hence neither of these determinants can be zero. O

Remark 29. We have proved that det A= = 7(161 I

Theorem 5.3
Let A € M, (F). The following are equivalent.

1. A is invertible;

2. Aisnon-singular;
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3. r(4) =n.

Proof. We have just shown that (i) implies (ii). We have also shown that (i) and (iii)
are equivalent by the rank-nullity theorem. So it suffices to show that (ii) implies

(iii).
Supposer(A) < n. Then we will show A is singular. We have dim span(A4;,...,4,) <

n. Therefore, since there are n vectors, (A, ..., A,) is not free. So there exist scalars
Ai not all zero such that >, A\;A; = 0. Choose j such that \; # 0. Then,

1
A]’ = —rj ;)\ZAZ

So we can compute the determinant of A by

detA:det(Al,...,;Z)\iAi,...,An)

ity

Since the determinant is alternating and linear in the jth entry, its value is zero. So
A is singular as required. O

Remark 30. The above theorem gives necessary and sufficient conditions for invertibility

of a set of n linear equations with n unknowns. There exists a unique solution X € F"
to AX =Y iff Aisinvertible.

§5.7 Determinants of linear maps

Lemma 5.9

Similar matrices have the same determinant.

Proof.

det (P*IAP) = det (Pil) det Adet P = det Adet (P*IP) = det A”

? P invertible.

Definition 5.6
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If o is an endomorphism, then we define
det o = det[a]p g

where B is any basis of the vector space. This is well-defined, since this value does
not depend on the choice of basis.

Theorem 5.4
det: L(V,V) — F satisfies the following properties.

1. det I =1;
2. det(af) = det avdet 3;
3. det a # 0 if and only if « is invertible, and in this case, det(a‘l) deta = 1.

This is simply a reformulation of the previous theorem for matrices.

Proof. The proof is simple, and relies on the invariance of the determinant under a
change of basis. Simply pick a basis, and re-express in terms of [a]g, [5] 5. O

§5.8 Determinant of block-triangular matrices

Lemma 5.10
Let A € My(F), B € My(F),C € My, (F). Consider the matrix

A C
Then det M = det A det B.

Proof. Letn =k +¢,s0o M € M, (F). Let M = (m;;). We must compute

det M = Z (o) H Me(3)i
i=1

O'ESTL

Observe that m,(;; = 0if i < k and o(i) > k. Then, we need only sum over o € S,
such that for all j < k, we have o(j) < k. Thus, forall j € {k+1,...,n}, we have
o(j) € {k+1,...,n}. We can then uniquely decompose ¢ into two permutations
o = o103, where o7 is restricted to {1, ..., k} and o3 is restricted to {k + 1,...,n}.
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Hence,

det M = Z Z (o) H Me(3)i
i=1

01ESE 02€S, _k

k n
= Z Z 5(01)5(02)Hm01(i)i H My (i)i
01ESE 02€S, 1 i=1 i=k+1
k n
= > > elonelo) [T A" I Boawi
01ESE 02€SH _k =1 i=k+1
k n
= ( Z 5(01)HAa(i)i) ( Z e(o2) H Ba(i)i)
01ESk =1 02€ES,_k i=k+1
=det Adet B

“i,01(3) € [1, k] 50 Moy ()i = Aoy (3)i-

Corollary 5.4

We need not restrict ourselves to just two blocks, since we can apply the above
lemma inductively. In particular, this implies that an upper-triangular matrix with
diagonal elements \; has determinant [[; \;.
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§6 Adjugate Matrices

§6.1 Column and row expansions
Let A € M, (F) with column vectors A(*). We know that
det(A(l),...,A(j),...,A(k),...,A(")) - —det(A(l),...,A(k),...,A(j),...,A(”))

Using the fact that det A = det AT we can similarly see that swapping two rows will
invert the sign of the determinant.

Remark 31. We could have proven all of the properties of the determinant above by using
the decomposition of A into elementary matrices.

Definition 6.1 (Minor)
Let A € M, (F). Leti,j € {1,...,n}. We define the minor Az € M,,_1(F) to be the
matrix obtained by removing the ith row and the jth column from A.

Example 6.1

Lemma 6.1 (Expansion of the determinant)
Let A € M, (F).

1. Letj € {1,...,n}. The determinant of A is given by the column expansion with
respect to the jth column:

det A = Z(*l)i—i_jaij det Aa
i=1

2. Leti € {1,...,n}. The same determinant is also given by the row expansion
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with respect to the ith row:
e . .
det A = Z(—l)zﬂaij det AiAj
j=1
This is a process of reducing the computation of n x n determinants to (n — 1) x (n — 1)

determinants. A powerful tool to compute determinants.

Example 6.2

‘E.XZIM\()(Q A =

Proof. We will prove case (i), the column expansion with respect to the jth column.
Then (ii) will follow from the transpose of the matrix.

Let j € {1,...,n}. We can write AU) = > ieq aije; where the e; are the canonical
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basis and A = (ai;)1<i j<n-

n
det A = det (A(l), cee ,Ajfl, Z Ajj€;, Aj+1, ey A(n)>

=1

= gaij det (A(l),...,ei, L ,A<n>>

Then, by swapping rows and columns,
= Zaij(—l)jfl det (62‘, A(l), e ,A(n)>
i=1

Swapping the ith row with the first:

1 (475 ai7j_1 ai7j+1 cee Qgn
n : : 0
= Zaij(—l)]_l(—l)l_ldet . A~
=1 . LY}
0

This has brought the matrix into block form, where there is an element of value 1 in
the top left, and the matrix A7 in the bottom right. The bottom left block is entirely
zeroes. Hence,

_ itj, n
det A = ;(—1) Ta;; det Az.j
as required. O

Remark 32. We have proven that

det (AN, Ay, Ajpa, o, A™) = (<1)™ det A

§6.2 Adjugates

Definition 6.2 (Adjugate matrix)

Let A € M, (F). The adjugate matrix of A, denoted adj 4, is the n x n matrix given
by

(adj A)” = (—1)i+j det A]’;
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Hence,

det (A<1), L AGTD e AGED ,A<">) = (adj A)

Theorem 6.1
Let A € M, (F). Then

(adj A)A = (det A)I
In particular, when A is invertible,

4, adjA
~ det A

Proof. We have
_ 1\ t+T . —~
det A = Z( 1) Q5 det Aij
Hence,
det A = Z(adj A)jiai; = ((adj A)A)j;

=1

So the diagonal terms match. Off the diagonal,

0=det| AD, ..., A% A® 40
~—

jth position

By linearity,

0 =det | A1 Z QikCi, - - A(k ,A(”)
R,_/
jth position

:Zaikdet AV e AR A
—~

=L Jjth position

= Z air(adj A) i

i=1
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= ((adj A)A)

§6.3 Cramer’s rule

Proposition 6.1

Let A € M, (F) be invertible. Let b € F". Then the unique solution to Az = b is
given by

1
~ detA det (AiAb)

where A3 is obtained by replacing the ith column of A by b.

Ty

This is an algorithm to compute z, avoiding the computation of AL

Proof. Let A be invertible. Then there exists a unique € F" such that Az = b.
Then, since the determinant is alternating,

det (Aﬁ’) — det (A<1>, L AGD b AGHD ,A(”))
= det(AD),..., AUV, Az, AT+, Al)

= det (A<1>, o AT N g A0 AED A(”))
j=1

As det linear we can bring out the z;s and then as its alternating,
— x; det (A<1>, LG AGD AG) 4G A<">)
=x;det A

So the formula works. O
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§7 Eigenvectors and Eigenvalues

§7.1 Eigenvalues

Let V be an F-vector space. Let dimp V = n < oo, and let o be an endomorphism of
V.

Question

Can we find a basis B of V such that, in this basis, (o] = [a],p has a simple (e.g.
diagonal, triangular) form?

Recall that if B’ is another basis and P is the change of basis matrix, [a]g = P~}[a]pP.
Equivalently, given a square matrix A € M, (F') we want to conjugate it by a matrix P
such that the result is ‘simpler’.

Definition 7.1 (Diagonalisable)

Let o € L(V') be an endomorphism. We say that « is diagonalisable if there exists
a basis B of V such that the matrix [a]p is diagonal.

Definition 7.2 (Triangulable)

We say that « is triangulable if there exists a basis B of ' such that [a] 5 is triangular.

Remark 33. We can express this equivalently in terms of conjugation of matrices.

Definition 7.3 (Eigenvalue, Eigenvector and Eigenspace)

A scalar A € F'is an eigenvalue of an endomorphism « if and only if there exists
a vector v € V \ {0} such that a(v) = Av. Such a vector is an eigenvector with
eigenvalue \.

Vi ={v e V:a(v) = M} <V is the eigenspace associated to \.

Lemma 7.1

Letae L(V)and A € F.
A is an eigenvalue iff det(ov — AI) = 0.

Proof. If X is an eigenvalue, there exists a nonzero vector v such that a(v) = Av, so
(v — AI)(v) = 0. So the kernel is non-trivial. So a — AI is not injective, so it is not
surjective by the rank-nullity theorem. Hence this matrix is not invertible, so it has
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zero determinant. O

Remark 34. If o(v;) = A\jv; (v; # 0) for j € {1,...,m}, we can complete the family v,
into a basis (vy, ..., v,) of V. Then in this basis, the first m columns of the matrix « has
diagonal entries \;.

§7.2 Elementary facts about polynomials

Recall the following facts about polynomials on a field ', for instance
f&)=ant"+---+art+ag, a;€F

We say that the degree of f, written deg f is n. The degree of f + ¢ is at most the max-
imum degree of f and g. deg(fg) = deg f + degg.

Let F[t] be the vector space of polynomials with coefficients in F'.

Aisarootof f(t) < f(A=0).

Lemma 7.2
If Ais aroot of f then (¢t — \) divides F. Le. f(t) = (t — \)g(t) where g(t) € F[t].

Proof.
ft) =ant" + - +ait +ag
Hence,
fA) =ap\"+ - +a1A+ap=0
which implies that

f@) =ft) = fA) = an(t" = N") + -+ a1(t = A)
But note that, for all n,

A= (=N M2 X R Y

O

Remark 35. We say that ) is a root of multiplicity k if (¢ — \)* divides f but (¢ — \)*+!
does not.

Corollary 7.1
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A nonzero polynomial of degree n has at most n roots, counted with multiplicity.

Proof. Induction on the degree. Left as an exercise. O

Corollary 7.2

If f1, f2 are two polynomials of degree less than n such that f;(t;) = fa(t;) for i €
{1,...,n} and t; distinct, then f; = fo.

Proof. fi — f2 has degree less than n, but has n roots. Hence it is zero. ]

Theorem 7.1

Any polynomial f € C[t] of positive degree has a complex root. When counted with
multiplicity, f has a number of roots equal to its degree.

Corollary 7.3

Any polynomial f € C[t] can be factorised into an amount of linear factors equal to
its degree. f(t) = c];i—;(t — X\i)%, withc e C, \; € C, ; € N.

Proved in Complex Analysis.

§7.3 Characteristic polynomials

Definition 7.4 (Characteristic polynomials)

Let a be an endomorphism. The characteristic polynomial of « is

Xa(t) = det(A” —tI)

"A = [a] for any basis B, we will see it’s well defined below.

Remark 36. 1. x, is a polynomial because the determinant is defined as a polynomial
in the terms of the matrix.

2. Note further that conjugate matrices have the same characteristic polynomial, so
the above definition is well defined in any basis. Indeed, det(P~'AP — \I) =
det(P~Y(A — AI)P) = det(A — AI).

Theorem 7.2
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Leta € L(V). ais triangulable iff xo can be written as a product of linear factors
over F. Le. xo(t) = cI[iL,(t — N\)”

“\; need not be distinct.

Corollary 7.4

In particular, all complex matrices are triangulable.

Proof. ( = ): Suppose « is triangulable. Then for a basis B, [a|p is triangulable
with diagonal entries a;. Then

Xa(t) = (a1 —t)(az —t) -+~ (an — t)

(<=): We argue by induction on n = dim V. True for n = 1.

By assumption, let x,(t) be the characteristic polynomial of o with a root . Then,
Xa(A) = 0 implies A is an eigenvalue. Let V) be the corresponding eigenspace. Let
(v1,...,v;) be the basis of this eigenspace, completed to a basis (v1,...,v,) of V.
Let W = span {viy1,...,0,}, and then V =V, & W. Then

o= (3 &)

where « is arbitrary, and C'is a block of size (n — k) x (n — k).
Then «induces an endomorphisma: V/V\ — V/Vy withC = [a]gand B = (vg1+
VayoooyUn + V)\).

Then (block product)

det([a]p — tI) = det <()\ Bt)l C i tI)

= (A —t)*det(C —tI)
We know det([a ]B—tI)—cﬁ(t—ai)

=1

— det(C —tI)" = (t — a;)

m:

k+1
By induction on the dimension, we can find a basis (w1, ..., w,) of W for which
[Clw has a triangular form. Then the basis (vy, ..., Vg, Wg+1, - .., wy) is a basis for
which « is triangular. O

"As det(C — tI) is a polynomial
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Lemma 7.3

Let n = dim V/, and V' be a vector space over R or C. Let a be an endomorphism on
V. Then

Nedv)) = (=" 4 1t N 4o
with

co=detA; c,1=(-1)""1trA
Proof.

Xa(t) = det(a —tI) = xa(0) = det(a) = co.

Further, for R, C" we know that « is triangulable over C. Hence x,(t) is the determ-
inant of a triangular matrix;

(ai —1)

Xa(t)

1

n

1=
=(-1)™" + Cnfltn_l +---+co
Hence

n
Cp—1 = (_1)71—1 Z a;
7

| I— |
tr A

Since the trace is invariant under a change of basis, this is exactly the trace as re-
quired. O

“For R we can think of A as having complex entries as well.

§7.4 Polynomials for matrices and endomorphisms

Let p(t) be a polynomial over F'. We will write
p(t) =ant"+---+ap, a;€F
For a matrix A € M,,(F) (V¥ k A¥ € M,(f)), we define
p(A) = a, A" + -+ 4+ ag € M, (F)
For an endomorphism o € L(V),

pla) = apa™ +---+agl e L(V); o*=ao---0a

k times
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§7.5 Sharp criterion of diagonalisability

Theorem 7.3

Let V be a vector space over F of finite dimension n. Let o be an endomorphism of
V.

Then « is diagonalisable if and only if there exists a polynomial p which is a product
of distinct linear factors, such that p(ar) = 0. In other words, there exist distinct
A1, ..., \; such that

Proof. ( = ) Suppose « is diagonalisable. Let A{,...,\; be the k& < n distinct
eigenvalues. Let

k

p(t) =TIt =)

=1

Let B be a basis of V' made of the eigenvectors of « (it is precisely the basis in which
[a] p is diagonal).

Let v € B. Then a(v) = Ajv for some i. Then, since the terms in the following
product commute,

k
(@=XAl)(v) =0 = p(a)(v) = [H(a - Aﬂ)] (v)*=0
j=1

So for all basis vectors, p(a)(v) = 0. As B a basis, by linearity, p(a)(v) =0V v € V
so p(a) = 0.

(<=) (Kernel lemma, Bezout’s theorem for prime polynomials)
Conversely, suppose that p(a) = 0 for some polynomial p(t) = [[¥_(t — );) with
distinct \;. Let V), = ker(a — A\;I). We claim that

k
V=W,
i=1
Consider the polynomials
k

t— M
q;(t) = H .
i=1,i#j Aj = Ai
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These polynomials evaluate to one at \; and zero at \; for i # j. Hence ¢;(\;) = d;5.
We now define the polynomial

q=q -+ +a

We know degq; < k — 1sodegqg < k— 1. Note, ¢(\;) = 1foralli € {1,...,k}.
The only polynomial that evaluates to one at & points with degree at most (k — 1) is
exactly given by ¢(t) = 1.

Consider the endomorphism

mj = gj(@) € L(V)

These are called the ‘projection operators’. By construction,

So the sum of the 7; is the identity. Hence, for allv € V,
k
Iw)=v=> mv) =) ga))
7=l j=1

So we can decompose any vector as a sum of its projections 7;(v). Observe by defin-
ition of ¢; and p,

1
(a = NjI)gj(a)(v) = m(a — i) Ll;[j(t - /\i)] (@)
1 k

= —H#](AJ — )\2) g(a — )\ZI)(U)

1
“ 00— ™) Ai)p(oz)(’v)

By assumption, this is zero. For all v, we have
(@ =XAD7j(v) =0 = 7;(v) € ker(a — A\;I) = V),
(m; is a projector on V), ;). We have then proven that, forallv € V,

k
v=q(v) =) m(v)
EV)\j

70



Hence,
k
V=> W,
j=1

It remains to show that the sum is direct. Indeed, let

v E V)\j N (Z VM)

i#j
We must show v = 0. v € V), so applying m;j,

(a — NI)(v)

() = gi()() = [[ 25

Since a(v) = Ajv,

i#]
So m; ’ij = Id. However, we also know v € 37, V)\,. So we can write v = 3}~ ; w;
for w € V),. Thus,

(a0 — A D) (w;)
P = Ry

mi(wi) = [

m#j
Since a(w;) = \jw;, one of the factors will vanish, hence
7'(']' (wl) = 0
So m; |v,, = 0fori # j and
U= Zwi - Wj(v) = Zﬂ'j(’wi) =0
i#j i#j
But v = 7;(v) hence v = 0.

So the sum is direct. Hence, B = (B4, .. ., By) is a basis of V, where the B; are bases
of Vy,. Then [a]p is diagonal.

Also, we know 7; |VAj: Id and m; |v, = 0fori # j so m; is the projector onto
Vi [

g

"One of the js is 7, so as they commute product is 0.
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Remark 37. We have shown further that if A\, ..., \; are distinct eigenvalues of ¢, then

k k
Z Vi = @ Vni
i=1 i=1

(and we know the projectors). Therefore, the only way that diagonalisation fails is when
this sum is not direct, so

k
YW, <V
=1

Example 7.1

Let F' = C. Let A € M, (F) such that A has finite order; there exists m € N such that
A™ = I. Then A is diagonalisable. This is because

1= p0) = [[e -6 =t

m
j=1

and p(A4) = 0.

§7.6 Simultaneous diagonalisation

Theorem 7.4

Let V be a finite dimensional vector space. Let a, 8 be endomorphisms of V' which
are diagonalisable.

Then «, 8 are simultaneously diagonalisable (there exists a basis B of V such that
[a] B, [f] B are diagonal) if and only if o and § commute.

Proof. ( = ) 3 B basis of V s.t. [a]p, [8]p are diagonal. Two diagonal matrices
commute, i.e. [a]|p[S]s = [B]B[a]B- If such a basis exists, a5 = [« in this basis. So
this holds in any basis.

(«<=) Conversely, suppose «, 3 are diagonalisable and a8 = Sa. We have

where )\;, ..., \; are the £ distinct eigenvalues of a.

Claim 7.1
V), stable by 3, i.e. ,B(V,\j) <V

J
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Proof. Indeed, forv € V),
af(v) = pa(v) = f(Av) = AjB(v) = a(B(v)) = A;B(v)

Hence, 3(v) € Vj,. O

By assumption, 3 is diagonalisable. Hence, there exists a polynomial p with distinct
linear factors such that p(5) = 0. Now, (V,\].) < V), so we can consider 6]‘& . This
J

is an endomorphism of V. We can see that

()
V)\j

Hence, B‘VM is diagonalisable. Let B; be the basis of V), in which ﬁ\VAj is diagonal.

Since V. =@ V), B= (Bi,...,By)is abasis of V. Then the matrices of o and § in
V are diagonal. O

§7.7 Minimal polynomials of an endomorphism

Recall from IB GRM the Euclidean algorithm for dividing polynomials. Given a, b poly-
nomials over F' with b nonzero, there exist polynomials ¢, over F' with degr < degb

anda =gb+r.

Definition 7.5 (Minimal polynomial)

Let V be a finite dimensional F-vector space. Let a be an endomorphism on V.
The minimal polynomial m,, of a is the (unique up to a constant) nonzero polyno-
mial with smallest degree such that mq(a) = 0.

Remark 38. If dimV = n < oo, then dimL(V) = n? In particular, the family
{I, a,. .., a”2} cannot be free since it has n? + 1 entries. So 3 (a,;2,...,a1,a9) # 0 s.t.
ap2a™ 4+ =aja+ag =0. S0 3 p € Flt] s.t. p # 0 and p(a) = 0. Hence, a minimal
polynomial always exists.

Lemma 7.4

Let o € L(V) and p € F[t] be a polynomial.
Then p(a) = 0 if and only if m,, is a factor of p. In particular, m,, is well-defined and
unique up to a constant multiple.
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Proof. Letp € F[t] such that p(a) = 0. If mq () = 0 and deg m,, < deg p, we can per-
form the division p = m,q + r for degr < deg m,. Then p(a) = mq(a)g(a) + ().
But mq(a) = 0sor(a) = 0.

But degr < degm, and m,, is the smallest degree polynomial which evaluates to
zero for o, so r = 050 p = mqq. d In particular, if m, ms are both minimal polyno-
mials that evaluate to zero for o, we have m; divides ms and ms divides m;. Hence
they are equivalent up to a constant. O

Example 7.2
Let V = F? and

() ()

We can check p(t) = (t—1)2 gives p(A) = p(B) = 0. So the minimal polynomial of A
or B must be either (t—1) or (t—1)? (as the min poly divides any poly s.t. p(a) = 0).
For A, we can find the minimal polynomial is (t — 1), and for B we require (¢ — 1).
A is diagonalisable as it is a product of distinct linear factors. So B is not diagonal-
isable, since its minimal polynomial is not a product of distinct linear factors.

§7.8 Cayley-Hamilton theorem

Theorem 7.5 (Cayley-Hamitlon)

Let V' be a finite dimensional F-vector space. Let o € L(V) with characteristic
polynomial x(t) = det(a — tI). Then x,(a) = 0.

Corollary 7.5

Mo | Xa-

Two proofs will provided; one more physical and based on I’ = C and one more algeb-
raic.

Proof. Let F = C. Let B = {v1,...,v,} be a basis of V' such that [«]p is triangular.
Note, if the diagonal entries in this basis are a;,

n

Xal(t) = H(ai —t) = xala)=(a—a1l)...(a—ayl)
=1

We want to show that this expansion evaluates to zero. Let U; = span {vy,...,v;}.
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Letv € V = U,. We want to compute x,(«)(v). Note, by construction of the
triangular matrix.
Xa(@)(v) = (a@—a1])...(a —apl)(v)
—_———
€Un—1
=(a—al)...(a—ap—1])(a—a,I)(v)
EUn72
=(a—ail)...(a—apl)(v)
cU;
=0
Hence x,(a) = 0. O

The following proof works for any field where we can equate coefficients, but is much
less intuitive.

Proof. We will write
det(t] — ) = (=1)"xa(t) = 1" +an_1t""" + - +ag

For any matrix B, we have proven B adj B = (det B)I. We apply this relation to the
matrix B = tI — A. We can check that

adj B = adj(tI — A) = B,_1t" ' + ... 4+ Byt + By

since adjugate matrices are degree (n — 1) polynomials for each element. Then, by
applying B adj B = (det B)I,

(tI — A)[Byp_1t" "' +--- 4 Byt + Bo] = (det B)I = (" + - - - 4+ ag)[

Since this is true for all ¢, we can equate coefficients. This gives

tn : I= Bn,1
L an_1l = Bp_g — ABp_1
tO : CL()I = —ABl

Then, substituting A for ¢ in each relation will give, for example, A"] = A"B,,_.
Computing the sum of all of these identities, we recover the original polynomial in
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terms of A instead of in terms of ¢. Many terms will cancel since the sum telescopes,
yielding

A" Jran,lAn_l +---4apl =0

§7.9 Algebraic and geometric multiplicity

Definition 7.6 (Algebraic/ geometric multiplicity.)

Let V be a finite dimensional F-vector space. Let & € L(V') and let A be an eigen-
value of a.
Then

Xa(t) = (t = A)*q(?)

where ¢(t) is a non zero polynomial over F' such that (¢ — \) does not divide q. a is
known as the algebraic multiplicity of the eigenvalue . We define the geometric
multiplicity g\ of A to be the dimension of the eigenspace associated with A, so
gx = dimker(a — \I).

Remark 39. X an eigenvalue iff « — AI singular iff det(a — AI) = xq(A) = 0.

Lemma 7.5
If X is an eigenvalue of a € L(V), then 1 < gy < ay.

Proof. We have g, = dimker(ow — AI). There exists a nontrivial vector v € V' such
that v € ker(ow — AI) since A is an eigenvalue. Hence gy > 1.

We will show that gy < a). Indeed, let vy, ..., vy, be a basis of V) = ker(a — AI).
We complete this into a basis B = (v1, ..., vg,,Vg,+1, - - ., V) of V. Then note that

[a]s = (AE” 21>

for some matrix A;. Now,

_ B (A —=1t)1, *
det(av — tI) = det ( 0 Ay 1]

By the formula for determinants of block matrices with a zero block on the off di-
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agonal,
det(a —tI) = (A —t)9 det(A; — tI)

Hence gy < a) since the determinant is a polynomial that could have more factors
of the same form. O

Lemma 7.6

Let V be a finite dimensional F-vector space. Let & € L(V') and let A be an eigen-
value of a. Let ¢y be the multiplicity of A as a root of the minimal polynomial of a.
Then 1 < ¢y < ay.

Proof. By the Cayley-Hamilton theorem, x, () = 0. Since m,, is linear, m,, divides
Xao- Hence cy < ay.

Now we show ¢y > 1. Indeed, ) is an eigenvalue hence there exists a nonzerov € V'
such that a(v) = \v. For such an eigenvector, a’(v) = A\P'v for P € N. Hence for
p € F[t], p(a)(v) = [p(A)]v. Hence mq () (v) = [mqa(A)](v). Since the left hand side

is zero, mq(A\) = 0. So ¢y > 1. O
Example 7.3
Let
1 0 —2
A=|0 1 1
0 0 2

The minimal polynomial can be computed by considering the characteristic polyno-
mial

xa(t) = (t=1)>*(t~-2)
So the minimal polynomial is either (t — 1)%(t — 2) or (t — 1)(t — 2). We check

(t—1)(t—2). (A—1I)(A—2I) can be found to be zero. So m4(t) = (t — 1)(t — 2).
Since this is a product of distinct linear factors, A is diagonalisable.

Example 7.4
Let A be a Jordan block of size n > 2. Then gy = 1, ay = n, and ¢\ = n.

§7.10 Characterisation of diagonalisable complex endomorphisms

77



Lemma 7.7 (Characterisation of diagonalisable endomorphisms over F' = C)

Let F' = C. Let V be a finite-dimensional C-vector space. Let o be an endomorphism
of V. Then the following are equivalent.

1. «is diagonalisable;
2. for all A eigenvalues of a, we have a) = gy;

3. for all A eigenvalues of o, ¢y = 1.

Proof. First, the fact that (i) is true if and only if (iii) is true has already been proven.
Now let us show that (i) is equivalent to (ii).

Let A1,..., \; be the distinct eigenvalues of a. We have already found that « is
diagonalisable if and only if V' = @ V),. The sum was found to be always direct,
regardless of diagonalisability. We will compute the dimension of V' in two ways;

k
n=dimV = degxq; n:dimV:Za)\i
i=1

since x, is a product of (¢ — \;) factors as F' = C. Since the sum is direct,

k k
dim (@ V>\¢> = ZQM
i=1 i=1

« is diagonalisable if and only if the dimensions are equal, so

k k

d g =) an

=1 i=1

We have proven that for all eigenvalues )\;, g, < ay,. Hence, ¥ | gy, = 38 | ay,
holds if and only if gy, = ay, for all 4. O

78



§8 Jordan Normal Form

For this section, let F' = C.

§8.1 Definition

Definition 8.1 (Jordan Normal Form)

Let A € M,(C). We say that A is in Jordan normal form (JNF) if it is a block
diagonal matrix, where each block is of the form

A1 0 - 0
0o x 1 - 0
Jn,(N) = 00 X - 0
00 0 --- A

We say that J,,, (\) € M, (C) are Jordan blocks. The ); € C need not be distinct.

Remark 40. In three dimensions,

A=

S O >
S > O
> O O

is in Jordan normal form, with three one-dimensional Jordan blocks with the same A
value.

§8.2 Similarity to Jordan normal form

Theorem 8.1
Any complex matrix A € M,,(C) is similar to a matrix in Jordan normal form, which
is unique up to reordering the Jordan blocks.

The proof is non-examinable. This follows from IB Groups, Rings and Modules.

Example 8.1
Let dim V' = 2. Then any matrix is similar to one of

G2 (Y6
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The minimal polynomials are

E—M)E—A2); (=X (E—N)

Example 8.2

Let dim V' = 3. Then any matrix is similar to one of

A0 0 A0 0 A 0 0 A 00 A0 0 A1 0
0 A 0110 X O[]0 A 11510 X Of;]0 X 110 X 1
0 0 As 0 0 X 0 0 X 0 0 A 0 0 A 0 0 A

The minimal polynomials are

(t— A1) (t = A2)(t — Aa); (8 — A)(E — A2); (£ — Ar)(t — A2)%5 (B — A); (£ — N5 (£ — N)?

Definition 8.2 (Nilpotent)

An endomorphism, u, is nilpotent of order n if ™ = 0 but u™t £ 0.

Remark 41. We can compute the quantities ay, gy, cy on the Jordan normal form of a
matrix. Indeed, let m > 2 and consider a Jordan block J,,(A). Then J,,,(A) — Al is the
zero matrix with ones on the off-diagonal. (J,,,(A) — AI)* pushes the ones onto the next
line iteratively, so

0 I,
(Jm()‘) - AI)k = (O 0 k)

Hence (J,, — AI) is nilpotent of order exactly m. In Jordan normal form,

1. ay is the sum of sizes of blocks with eigenvalue . This is the amount of times A is
seen on the diagonal.

2. gy is the amount of blocks with eigenvalue ), since each block represents one ei-
genvector.

3. ¢, is the size of the largest block with eigenvalue .

Example 8.3
Let

=13

We wish to convert this matrix into Jordan normal form; so we seek a basis for which
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this matrix becomes Jordan normal form.

xa(t) = (t—1)?

Hence there exists only one eigenvalue, A\ = 1. A — I # 0 hence m,(t) = (t — 1)2.
Thus, the Jordan normal form of A is of the form

#=(o )

ker(A—1)=(v1); v = (_11>

Now,

Further, we seek a vy such that

(A—I)UQ =V — VU2 = <_01>

Such a v9 is not unique. Now,

§8.3 Direct sum of eigenspaces

Theorem 8.2 (Generalised Eigenspace Decomposition)

Let V' be a C-vector space. Let dimV = n < oo. Then, the minimal polynomial
mq(t) of an endomorphism o € L(V') satisfies

k
ma(t) = [t = )"
i=1
where )\; are the eigenvalues of «. Then
V=V,
j=1
where V; = ker[(a — \;1)%]. Vj is called a generalised eigenspace associated with ;.

Remark 42. Note that V; is stable by «, that is, a(V;) = V;. Note further that
(= NI )|VJ = p; gives that p; is a nilpotent endomorphism; u;j = 0. So the Jordan

81



normal form theorem is a statement about nilpotent matrices.

Note, when « is diagonalisable, ¢; = 1 and hence we recover V; = ker(a — A\;I) and
V=V,

Proof. The key to this proof is that the projectors onto V; are ‘explicit’.

First, recall
ma(t) = [Tt = A5

Then, let

pi(t) =TTt = i)
i#j

Then p; have by definition no common factor. So by Euclid’s algorithm, we can find
polynomials g; such that

k
Z qipi =1
=l

We define the projector 7; = ¢;p;(c), which is an endomorphism. By construction,
forall v € V, we have

k k
> i) =Y gipji(e(v) = I(v) =v
j=1 j=1

Hence,
k
v= Z i (v)
i=1

Secondly, recall mq () = 0 and we can observe 7;(v) € Vj. Indeed,
(= NI)9mj(v) = (@ = A1) gjpj(a(v)) = gjma(a(v)) =0

Hence 7(v) € V; = ker(aw — \;1)%.

So, v =Y¥_, m;j(v) Vv € V where 7;(v) € Vj. So, V = YF_, V.
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We need to show that this sum is direct. Note, for ¢ # j, mym; = 0 as mq | m7;.
Hence, observe that

k
T, = T (Zﬂ'j) — T, = T,
J=1 projector property

Thus, 7 is a projector. In particular, this implies that ;| is the identity if i = j and
zero if ¢ # j. This immediately implies that the sum is direct;

V=0V

J=1

Indeed, suppose

vevm(ZVj)

J#i
v = Zvj, v; €V;
J#1
m(v) = T; Z’Uj
J#i
v=20
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§9 Properties of bilinear forms

§9.1 Changing basis

Let ¢: V x V — F be a bilinear form. Let V be a finite-dimensional F-vector space. Let
B be abasis of V and let [¢|p = [¢] pp be the matrix with entries (e;, €;).

Lemma 9.1

Let ¢ be a bilinear form V' x V' — F. Then if B, B’ are bases for V, and P = [I]p' p
we have

[¢]lp = PT[¢]gP

Proof. This is a special case of the general change of basis formula. O

Definition 9.1 (Congruence)

Let A, B € M, (F) be square matrices. We say that A, B are congruent if there exists
P € M, (F) such that A = PTBP.

Remark 43. Congruence is an equivalence relation.

Definition 9.2 (Symmetric)

A bilinear form ¢ on V' is symmetric if, for all u,v € V, we have

QO(U7 U) = @(Uv u)

Remark 44. If A is a square matrix, we say A is symmetric iff A = AT. Equivalently,
Aij = Aji for all Z,j
So ¢ is symmetric if and only if [¢]p is symmetric for any basis B.

Note further that to represent ¢ by a diagonal matrix in some basis B, it must necessarily
be symmetric, since

PTAP=D = D=DT=(PTAP)T = PTATP = A= AT

§9.2 Quadratic forms

Definition 9.3 (Quadratic Form)
A map Q: V — Fis a quadratic form if there exists a bilinear form ¢: V x V — F
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such that, forallu € V,
Q(u) = p(u,u)

So a quadratic form is the restriction of a bilinear form to the diagonal.

Remark 45. Let B = (e;) be a basis of V. Let A = [¢|p = (¢(ei,e;j)) = (ai;). Then, for
u=>,xie; €V,

Q(u) = p(u,u) = SD(Z Cviez‘,ziﬂjej) = Zzwﬁjw(eueg‘) = Zzwiwjaij

We can check that this is equal to
Q(u) = 2T Ax

where [u|p = x. Note further that

aij + aj; A4 AT
T — . — e — ) L N——
oTAx = E E a;jT;Tj = E E ;T = E E 5 TiT; =X 5 x
i i i N
symmetric

So we can always express the quadratic form as a symmetric matrix in any basis.

Proposition 9.1

If Q: V — Fisa quadratic form, then there exists a unique symmetric bilinear form
¢: V xV — Fsuch that Q(u) = o(u, u).

Proof. Let v be a bilinear form on V' such that for all u € V, we have Q(u) = ¥ (u, u).
Then, let

() = [8(,0) + (0, )]

Certainly ¢ is a bilinear form and symmetric. Further, p(u, u) = 9 (u,u) = Q(u). So
there exists a symmetric bilinear form ¢ such that Q(u) = ¢(u,u), so it suffices to
prove uniqueness.

Let ¢ be a symmetric bilinear form such that for all u € V' we have Q(u) = ¢(u, u).
Then, we can find

Q(u+v) =@(u+v,u+v)=puu)+ @ev,v)+ 2¢(u,v)
= Q(u) + Q(v) + 2¢(u,v)
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Thus ¢(u, v) is defined uniquely by (), since
2¢(u,v) = Q(u+v) = Q(u) — Qv)

So ¢ is unique (when 2 is invertible in F"). This identity for ¢(u,v) is known as the
polarisation identity. O

§9.3 Diagonalisation of symmetric bilinear forms

Theorem 9.1 (Diagonalisation of symmetric bilinear forms)

Let o: V x V — F be a symmetric bilinear form, where V is finite-dimensional.
Then there exists a basis B of V' such that [¢]p is diagonal.

This does extend to infinite dimensions, we use this in QM a lot.

Proof. By induction on the dimension, suppose the theorem holds for all dimen-
sions less than n for n > 2.

If o(u,u) = Oforallu € V, then ¢ = 0by the polarisation identity, which is diagonal.
Otherwise p(ej,e1) # 0 for some e; € V. Let

U=({e1))" ={veV:ple,v) =0}
This is a vector subspace of V, which is in particular
ker {p(e1, - ): V — F}

By the rank-nullity theorem, dim V' = dimU + 1, as Im ¢(ey,-) = F. Thus dimU =
n—1.

We now claim that U + (e;) is a direct sum. Indeed, for v € (e;) N U, we have
v = Xej and p(e;,v) =0 (v € U). Hence A = 0 = v = 0, since by assumption
p(e1,e1) # 0.

SoV =U @ (e1) as the dimensions are the same.

So we find a basis B’ = (ea,...,e,) of U, which we extend by e¢; to B =
(e1,€2,...,6ey). Since U & (e;) has dimension n, this is a basis of V. Under this

basis, we find
_ p(er,er) 0
[SD]B ( 0 [(10|U]B/>

86



because
p(e1,e5) = p(ej,e1) =0
forall j > 2ase; € U. [¢|y] 5 is symmetric as ¢ symmetric.

We can then consider ¢|;; : U x U — F which is bilinear and symmetric.

By the inductive hypothesis we can take a basis B’ such that the restricted ¢ to be
diagonal, so [¢]p is diagonal in this basis. O

Remark 46. The key of this proof is that p(ej,e1) #0 = V = (et @ (e1).

Example 9.1
Let V = R? and choose the canonical basis (e;). Let

Q(z1,x9,x3) = m% + a:% + 23:% + 2x120 + 22123 — 27973
Then, if Q(z1, z2, x3) = 2T Az, we have
1
A=11 1 -1
1 -1 2

Note that the off-diagonal terms are halved from their coefficients since in the ex-
pansion of 2T Az they are included twice.

Then, we can find a basis in which A is diagonal. We could use the above proof and
follow its algorithm to find a basis, or complete the square in each component. We
can write

Q(x1,22,73) = (1 + 22 + x3)2 + SL’% —dxoxs = (11 + 22 + :173)2 + (23 — 2302)2 = (21‘2)2

This yields a new coordinate basis 2/, ¥}, 25. Then P~1AP is diagonal. P is given
by

i 1 1 1\ (=

zh| =10 =2 1| |a

x5 0 -2 0/ \a3
p-1

§9.4 Sylvester’s law

87



Corollary 9.1

If F = C, for any symmetric bilinear form ¢ there exists a basis of V' such that [¢]p

is
I, O
0 0

Proof. Since any symmetric bilinear form ¢ in a finite-dimensional F-vector space
V can be diagonalised, let E = (ey, ..., e,) such that [¢] g is diagonal with diagonal
entries a;. Order the a; such that a; is nonzero for 1 < i < r, and the remaining
values (if any) are zero. For i < r, let \/a; be a choice of a complex root for a;. Then

v; = \%7 for i < rand v; = e; for i > r gives the basis B as required. O
Corollary 9.2

Every symmetric matrix of A/, (C) is congruent to a unique matrix of the form
I, 0
0 0

This doesn’t work in R as we cannot take root of /—1.

where r is the rank of the matrix.

Corollary 9.3
Let ' = R, and let V be a finite-dimensional R-vector space. Let ¢ be a symmetric
bilinear form on V. Then there exists a basis B = (vy, ..., vy) of V such that
I, 0 0
[SD]B =10 _Iq 0
0 0 O

for some integers p, ¢ > 0 and p + g = 7(¢p).

Proof. Since square roots do not necessarily exist in R, we cannot use the form above.
We first diagonalise the bilinear form in some basis E. Then, reorder and group the
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a; into a positive group of size p, a negative group of size g, and a zero group. Then,

\ZT_ ie{l,...,p}
— €i 1
Vi = \/m le{p+1’7p+Q}
€; ie{p—l—q—i—l,...,n}

This gives a new basis as required. O

Definition 9.4 (Signature)
Let F' = R. The signature of a bilinear form ¢ is

s(p)=p—q

where p and ¢ are defined as in the corollary above. (We also speak of the signature
of the associated quadratic form Q(u) = ¢(u,u))

This definition makes sense as it doesn’t depend on the basis.
Theorem 9.2 (Sylvester's law of inertia)

Let F = R. Let V be a finite-dimensional R-vector space. If a real symmetric bilinear
form is represented by some matrix

I, 0 0
0 —1I, 0
0 0 0

I, 0 0
0 —Iy 0
0 0 0

in another basis B’, then p = p’ and ¢ = ¢/. Thus, the signature of the matrix is well
defined.

Definition 9.5 (Positive Definite)
Let ¢ be a symmetric bilinear form on a real vector space V. We say that

1. @ is positive definite if p(u,u) > 0 for all nonzero u € V;

2. ¢ is positive semidefinite if ¢(u,u) > 0 forallu € V;
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3. ¢ is negative definite or negative semidefinite if p(u,u) < 0 or ¢(u,u) < 0
respectively for all nonzero u € V.

Example 9.2

The matrix

I, 0
0 0
is positive definite for p = n, and positive semidefinite for p < n.

We now prove Sylvester’s law.

Proof. Inorder to prove uniqueness of p, we will characterise the matrix in a way that
does not depend on the basis i.e. we will show that p has a geometric interpretation.

Claim 9.1

p is the largest dimension of a vector subspace of V' such that the restriction of
¢ on this subspace is positive definite.
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Proof. Suppose we have B = (vy,...,v,) and

I, 0 O
[SO]B =0 —-I; O
0 0 O

We consider
X =(v1,...,vp)

Then we can easily compute that |y is positive definite.
P
u = Z )\i'Ui
i=1
p P
Qu) = p(u,u) = (Z Xiviy D Aj”]‘)
i=1 j=1

p

Il
M*@

@(vivvj)
1

<
Il

=1 7

A

<o

>0

I
.M%

@
Il
-

Let

Y = (Upt1,...,0n)
Then, as above, ¢|, is negative semidefinite.

Suppose that ¢ is positive definite on another subspace X'. In this case, Y N
X' = {0}, since if y € Y N X’ we must have Q(y) < 0, but since y € X’ we have

y =0.

Thus, Y + X' =Y ® X', son =dimV > dimY +dim X'. ButdimY =n — p,

so dim X’ < p.

The same argument can be executed for ¢, hence both p and ¢ are independent

of basis. 0
As p has a geometric interpretation it cannot depend on the choice of basis. O

Remark 47. Similarly ¢ is the largest dimension of a subspace on which ¢ is negative
definite.

§9.5 Kernels of bilinear forms

91



Definition 9.6 (Kernel)
Let K = {v € V: Yu € V,p(u,v) = 0}. This is the kernel of the bilinear form.

Remark 48. By the rank-nullity theorem,

dim K +rankgp =n

F = R. Using the above notation, we can show that there exists a subspace 7" of di-
mension n — (p + ¢) + min {p, ¢} such that ¢|, = 0. Indeed, let B = (v1,...,v,) such
that

0
-1,
0

o O O

The quadratic form has a zero subspace of dimension n — (p + ¢) in the bottom right.
But by setting

T = {Ul +’Up+1, N +Up+q7vp+q+17 . ,'Un}

we can combine the positive and negative blocks (assuming here that p > ¢) to produce
more linearly independent elements of the kernel. In particular, dim T is the largest
possible dimension of a subspace 7" of V' such that ¢|,, = 0.

§9.6 Sesquilinear forms

Let F' = C. The standard inner product on C" is defined to be

T n n
< N >=inyi
=1
In Yn

This is not a bilinear form on C due to the complex conjugate, it is not linear in the second
entry, (x, \y) = A (z,y).

Definition 9.7 (Sesquilinear Form)

Let V, W be C-vector spaces. A form ¢: V x W — C is called sesquilinear if it is
linear in the first entry, and

(v, \qw1 + daws) = Ap(v, w1) + Aap(v, ws)

so it is antilinear with respect to the second entry.
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Definition 9.8 (Matrix of Sesquilinear Form)
Let B = (vi,...,v,) be abasis of V and C = (wy,...,w,) be a basis of W. Then
[elB.c = (e(vi,wy)).

Lemma 9.2
Let B = (v1,...,vny) be abasis of V and C = (wy, ..., w,) be a basis of W.

p(v,w) = [UUB[SD]B,C[U}]O

Proof. Left as an exercise. O

Lemma 9.3 (Change of Basis)

Let B, B’ be bases of V and C, C’ be bases of W. Let P = [I|p/ g and Q = [I]¢/ c.
Then

[elBr,cr = PT¢]B,c@

Proof. Left as an exercise. O

§9.7 Hermitian forms

Definition 9.9 (Hermitian Forms)

Let V be a finite-dimensional C-vector space. Let ¢ be a sesquilinear form on V.
Then ¢ is Hermitian if, for all u,v € V,

QO(U7 U) = @(Uv u)

This is the complex value generalisation of symmetric bilinear form.

Remark 49. If ¢ is Hermitian, then ¢p(u,u) = ¢(u,u) € R. Further, p(Au, \u) =
|AI*¢(u, u). This allows us to define positive and negative definite Hermitian forms.

Lemma 9.4
A sesquilinear form ¢: V' x V — C is Hermitian iff for all basis B of V,

lels = [oll;
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Proof. Let A = [¢]p = (ai;j). Then a;; = p(es, e5), and aj; = p(ej,e) = (e, e5) =
@;j. So AT = A.

Conversely suppose that [¢]z = A = A'. Now let

n n
u= Z Aiei; v = Z,uiei
=1 i=1

Then,
n n n n
o(u,v) = @ | Y Niei, > piei | =) Ailjai
i=1 j=1 i=1j=1
Further,
n n n n n
plo,u) = @ > miei, Y Ajes | = D0 AN = Y N5
i=1 j=1 i=1j=1 j=1

which is equivalent. Hence ¢ is Hermitian. O

§9.8 Polarisation identity

A Hermitian form ¢ on a complex vector space V' is entirely determined by a quadratic
form @Q: V — R such that v — ¢(v,v) by the formula

o(u1,) = §[Q(u+v) — Qu —v) +iQu+ ) — iQ(u — iv)]
Proof left as an exercise.

§9.9 Hermitian formulation of Sylvester’s law

Theorem 9.3 (Sylvester’s law of inertia for Hermitian forms)

Let V be a finite-dimensional C-vector space. Let ¢: V x V' — C be a Hermitian
form on V. Then there exists a basis B = (v1,...,v,) of V such that

[l =

o o5

0
—I,
0

o O O

where p, ¢ depend only on ¢ and not B.
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Proof. The following is a sketch proof; it is nearly identical to the case of real sym-
metric bilinear forms.

If ¢ = 0, existence is trivial. Otherwise, using the polarisation identity there exists
e1 # 0 such that p(e1, e1) # 0. Let

€1

—_— —> @(01701) = :i:].
l(er, e1)]

v =
Consider the orthogonal space W = {w € V': ¢(v1, w) = 0}. We can check, arguing
analogously to the real case, that V' = (v1) @ W. Hence, we can inductively diagon-
alise ¢.

p,q are unique. Indeed, we can prove that p is the maximal dimension of a sub-
space on which ¢ is positive definite (which is well-defined since ¢(u,u) € R). The
geometric interpretation of ¢ is similar. O

§9.10 Skew-symmetric forms

Definition 9.10 (Skew-symmetric Form)

Let V be a finite-dimensional R-vector space. Let ¢ be a bilinear form on V. Then
¢ is skew-symmetric if, for all u,v € V,

p(u,v) = —p(v,u)

Remark 50. ¢(u,u) = —p(u,u) = 0. Also, in any basis B of V, we have [¢]p = —[¢]].
Any real matrix can be decomposed as the sum

A= %(A+AT) 4 %(A AT
where the first summand is symmetric and the second is skew-symmetric.

§9.11 Skew-symmetric formulation of Sylvester’s law

Theorem 9.4 (Sylvester's law of inertia for Skew-symmetric forms)

Let V be a finite-dimensional R-vector space. Let ¢: V x V — R be a skew-
symmetric form on V. Then there exists a basis

B = (Ulawla V2, W2, ..., Um, Wm, V2m+1, V2m+2, - - - Un)
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of V such that

with m 2 x 2 blocks.

Sketch Proof. This is again very similar to the previous case.
We will perform an inductive step on the dimension of V, n = dim V.

If ¢ # 0, there exist v1,w; such that ¢ (v, w;) # 0. After scaling one of the vec-
tors, we can assume ¢(vi,w;) = 1. Since ¢ is skew-symmetric, p(w;,v1) = —1.
Then v, w; are linearly independent; if they were linearly dependent we would
have ¢(v1,w1) = p(v1, Av1) = Ap(vy,v1) = 0.

Let U = (vi,wy) and let W = {v € V: p(v1,v) = ¢p(w1,v) = 0} and we can show
V = U @ W. Then induction gives the required result. O

Corollary 9.4

Skew-symmetric matrices have an even rank.
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§10 Inner Product Spaces

§10.1 Definition

Definition 10.1 (Inner Product)

Let V be a vector space over R or C. A scalar product or inner product is a positive-
definite symmetric (respectively Hermitian) bilinear form ¢ on V..

Notation. We write

p(u,v) = (u,v)

Definition 10.2 (Inner Product Space)

V, when equipped with this inner product, is called a real (respectively complex)
inner product space.

Example 10.1

In C", we define

n
=1

Example 10.2
Let V = C°([0, 1], C). Then we can define

()= [ storgte)ar

This is the L? scalar product.

Example 10.3
We can fix a weight w: [0, 1] — R* where R} =R, \ {0} and define

(o) = [ oot d

Remark 51. Typically it suffices to check (u,u) = 0 = wu = 0 since linearity and
positivity are usually trivial.
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Definition 10.3 (Norm)

Let V' be an inner product space. Then for v € V, the norm of v induced by the
inner product is defined by

lv]l = (v, v))"/2

This is real, and positive if v # 0.

§10.2 Cauchy-Schwarz inequality

Lemma 10.1 (Cauchy-Schwarz Inequality)

For an inner product space,

[{u, )| < ull ]}

Remark 52. Note that equality iff u, v colinear.

Proof. FF =RorC.
Lett € F. Then,

0 < |[tu — v|| = (tu — v, tu — v) = t (u, u) — t (u,v) — I (v,u) + ||v||?

Since the inner product is Hermitian (v, u) = (u, v),
201 112 2
O < [t*lull® + llvll” = 2Re(t (u, v))

By choosing

{u, v)

t =
2
[l

we have

o< 0P ey <|<u,v>|2>

2 2
] [l

Since the term under the real part operator is real, the result holds.

Proving equality implies u, v are proportional is left as an exercise. O

Corollary 10.1 (Triangle Inequality)
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In an inner product space,

[+ ol < flul| + [o]]

Proof. We have

||u+v||2 = (u+v,u+v)
= |Jul|” + 2Re((u, v)) + [|v|”
< |lul® + [[o)* + 2[|u] - ||v|| by Cauchy-Schwarz
= (Jlull + I|v]))?

O

Remark 53. Any inner product induces a norm, but not all norms derive from scalar
products.

§10.3 Orthogonal and orthonormal sets

Definition 10.4 (Orthogonal and Orthonormal Sets)

A set (eq,. .., e) of non-zero vectors of V' is said to be orthogonal if (e;, e;) = 0 for
all i # j. The set is said to be orthonormal if it is orthogonal and ||¢;|| = 1 for all .
In this case, (e;, e;) = d;;.

Lemma 10.2

If (e1, ..., ex) are orthogonal and nonzero, then they are linearly independent. Fur-
ther, let v € ({e;}). Then,

k

v, €5
UZZ)\jej — )\j=< J2>
Z e
Proof. Suppose
k
Z )\iel =0
i=1
Then,
k k
0= <Z )\iei,ej> — 0= ZAz <ei)ej> = >‘J
i=1 i=1
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Thus \; = 0 for all j.
Further, for v in the span of these vectors,
k

(v,e5) =D X {ei, ) = Ajlles |

=1

§10.4 Parseval’s identity

Corollary 10.2 (Parseval’s Identity)

Let V be a finite-dimensional inner product space. Let (e, .

mal basis. Then, for any vectors u,v € V, we have

(u,v) = Z (u,e;) (v, e;)

=1

Hence,

n
2 2
lull® = K, &)l
i=1

Proof. By orthonormality,

u = Z(u,ei> e; V= Z(v,ei>ei

i=1 i=1

~

Hence, by orthogonality and sesquilinearity,

n

(u,v) = Z (u,e;) (v, e;)

By taking u = v we find

§10.5 Gram-Schmidt orthogonalisation process
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Theorem 10.1 (Gram-Schmidt Orthogonalisation Process)

Let V' be an inner product space. Let (v;)icr be a linearly independent family of
vectors such that I is countable (or finite). Then there exists a family (e;);cr of or-
thonormal vectors such that for all £ > 1,

(01, ., o) = (1, -, k)

Proof. This proof is an explicit algorithm to compute the family (e;), which will be
computed by induction on k.

For k=1, take e; = HZ%H as v; # 0 as (v;) free.

Inductively, suppose (e1, ..., ex) satisfy the conditions as above. Then we will find
a valid e, 1. We define

k
€yl = Vkt1 — D (V41 €5) €

=1

This ensures that the inner product between e)_ ; and any basis vector ¢; is zero,
while maintaining the same span.

k
(€hs1r€5) = <Uk+1 - Z (k+1, €3) €3 ej>

i=1

= (Vk+1,€5) — (Vk41,€5)

= 0.
Suppose e;,; = 0. Then, vx41 € (e1,...,ex) = (v1,...,vx) which contradicts the
fact that the (v;) family is free.
(U1, Vks1) = {€1,.. ., e§€+1>.
Thus,
/
Ck
Ck+1 = /H

€k+1 H

satisfies the requirements. O

Corollary 10.3

In finite-dimensional inner product spaces, there always exists an orthonormal basis.
In particular, any orthonormal set of vectors can be extended into an orthonormal
basis.
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Proof. Pick (ey,...,ex) orthonormal. Then they are linearly independent so we can
extend to (eq, ..., €k, Vg1, ..., U,) abasis of V. Apply Gram Schmidt to this set noti-
cing that there is no need to modify (e, ..., e;). So we get (e1, ..., €k, €xt1,s---,€n),
an orthonormal basis of V. O

Remark 54. Let A € M,(R) be a real-valued (or complex-valued) matrix. Then, the
column vectors of A are orthonormal if ATA = I (or ATA = I in the complex-valued
case).

§10.6 Orthogonality of matrices

Definition 10.5 (Orthogonal and Unitary Matrices)

A matrix A € M, (R) is orthogonal if ATA = I, iff AT = A~L.
A matrix A € M, (C) is unitary if ATA = I, iff AT = A~L,

Proposition 10.1

Let A be a square, non-singular, real-valued (or complex-valued) matrix. Then A
can be written as A = RT where T is upper triangular and R is orthogonal (or
respectively unitary).

Proof. We apply the Gram-Schmidt process to the column vectors of the matrix.
This gives us an orthonormal set of vectors, which gives an upper triangular matrix
in this new basis. O

§10.7 Orthogonal complement and projection

Definition 10.6 (Orthogonal Direct Sum)

Let V be an inner product space. Let Vi, V> < V. Then we say that V' is the ortho-
gonal direct sum of V; and V5 if

1. V=Viel

2. for all vectors vy € Vi, vy € V5 we have (vy, v9) = 0.
1
Notation. For orthogonal direct sums we write V =V, @ V5.

Remark 55. If for all vectors v1, vy we have (vi,v9) = 0, thenv € Vi Nlh = ||vH2 =
0 = v = 0. Hence the sum is always direct if the subspaces are orthogonal.
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Definition 10.7 (Orthogonal)

Let V be an inner product space and let W < V. We define the orthogonal of W to
be

Wt ={veV:vYweW,(v,w) =0}

Lemma 10.3
L
For any inner product space V' and any subspace W < V, we have V =W & W+.

Proof. First note that WL < V. Then,ifweW,we WL, we have
lw]|* = (w, w) =0

since they are orthogonal, so the vector subspaces intersect only in the zero vector.
Now, we need to show V = W + W, Let (ey, . . ., e;) be an orthonormal basis of W
and extend it into (eq, ..., ek, €k11, .- ., €,) Which can be made orthonormal. Then,
(€kt1,- - ,en) are elements of W+ and form a basis. O

§10.8 Projection maps

Definition 10.8 (Projection)

Suppose V =U & W,so U is a complement of W in V.
Then, we define

T:V->W

V=U+wr—w

This is well defined, since the sum is direct.
7 is linear, and 72 = 7.

We say that 7 is the projection operator onto W.

Remark 56. The map I —  is the projection onto U, where I is the identity map.

Remark 57. If V an inner product space and W finite dimensional, then V = W+ & W
so we can let U = W+ and find 7 explicitly.

Lemma 10.4

Let V be an inner product space. Let W < V be a finite-dimensional subspace. Let
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(é1,...,er) be an orthonormal basis for W (by Gram Schmidt). Then,
1L 7(v) =YF, (v,e)e; YoeV.
2. forallv € V;w € W, ||[v — m(v)|| < |lv — w| with equality iff w = 7(v), hence
m(v) is the point in W closest to v.
Remark 58. This lemma has an infinite dimensional generalisation:
e V inner product space — Hilbert space (completeness)

e IV finite dimensional — closed.

Proof. Let W = (ey, ..., e) where (¢;) are an orthonormal basis.
We define w(v) = Y5, (v, e;) e;.
Then

v:(v—ﬂ'(v))—i—m
w

We claim that the remaining term is in the orthogonal; v — 7(v) € W. Indeed, we
must show (v — w(v), w) = 0 for all w € W. Equivalently, (v — 7(v), e;) = 0 for all
basis vectors e; of W. We can explicitly compute

k
<v - W(v)7€j> = <1),6j> - <Z <vaei> ei7ej>

i=1
k
(v,e5) = > (v, e5) (e, €5)
=1
= (v, €5) — (v, ;) =
Hence, v = (v — m(v)) + 7(v) is a decomposition into W and W+ so V = W + W+.
L
WNWt ={0}asforve WNW+ (v,v) =0sov=0,sowehave V=W @& W+.
For the second part, letv € V, w € W, and we compute
2
lo —w|?* = |lv—7(v) +7(v) —w
—_——— ——
ew-t ew
= (v —7(v) + 7(v) —w,v = 7(v) + 7(v) —w)
= |lo = 7 ()|* + |7 (v) — w|®
Ol

with equality if and only if w = 7 (v). O

2 flv—m
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§10.9 Adjoint maps

Definition 10.9 (Adjoint Map)

Let V, W be finite-dimensional inner product spaces. Let o € L(V,W). Then there
exists a unique linear map o*: W — V such that for all v, w € V, W,

{a(v), w) = (v, a"(w))

Moreover, if B is an orthonormal basis of V, and C is an orthonormal basis of W,
then

T

[0*]e,s = (l]s0)

Proof. Let B = (v1,...,v,) and C' = (w1, ..., wy,) and A = [o]p,c = (ai5).

To check existence, we define [o*]¢ p = AT = (¢ij) and explicitly check the defini-
tion. By orthogonality,

(o). S} = (T e s ) = S v
: ; i
Then,
<Z eits, @ (Z ,U«jwj)> _ <Z A, Z];ujckjvk> = ZAZW
. i i
So equality requires ¢;; = a;.

Uniqueness follows from the above; the expansions are equivalent for any vector if
and only if ¢;; = aj;. O

Remark 59. The same notation, a*, is used for the adjoint as just defined, and the dual
map as defined before. If V, IV are real product inner spaces and o € L(V, W), we define
: V. — V*such that ¢(v)(z) = (z,v) and similarly for W. Then we can check that the
adjoint for « is given by the composition of ¢ from W — W*, then applying the dual
from W* — V*, then applying the inverse of ¢) from V* — V.

§10.10 Self-adjoint and isometric maps

Definition 10.10 (Self-Adjoint and Isometries)

Let V be a finite-dimensional inner product space, and o be an endomorphism of
V. Let a* € L(V) be the adjoint map. Then,
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1. the condition (av,w) = (v, aw) ¥ v,w € V is equivalent to the condition ov =
a*, and such an « is called self-adjoint (for R we call such endomorphisms
symmetric, and for C we call such endomorphisms Hermitian);

2. the condition (aw,aw) = (v,w) V v,w € V is equivalent to the condition

a* = a1, and such an « is called an isometry (for R it is called orthogonal,

and for C it is called unitary).

Proposition 10.2

The conditions for isometries defined as above are equivalent.

Proof. (= ): Suppose (av, aw) = (v, w).

Then for v = w, we find |Jav||* = ||[v||, so « preserves the norm. In particular, this
implies ker « = {0}. Since « is an endomorphism and V is finite-dimensional, « is
bijective. Then for all v,w € V,

Hence o* = o~ 1.
(<=): Conversely, if o* = a~! we have

(aw, aw) = (v, ™ (aw)) = (v, w)

as required. O

Remark 60. Using the polarisation identity, we can show that « is isometric if and only if
forallv € V, [|a(v)| = ||v||. Le. preserving the scalar product iff preserving the norm.

Lemma 10.5

Let V be a finite-dimensional real (or complex) inner product space. Then for o €
L(V),

1. ais self-adjoint iff for all orthonormal bases B of V/, we have [a] g is symmetric
(or Hermitian);
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2. aisanisometry iff for all orthonormal bases B of V, we have [« s is orthogonal
(or unitary).

Proof. Let B be an orthonormal basis for V. Then we know [a*|p = [a]TB. We can
then check that [a]}rg = [a]p and [a]g = [a] 5" respectively. O

Definition 10.11 (Orthogonal Group)
For F' = R, we define the orthogonal group of V' by

O(V)={a € L(V): ais an isometry}

Definition 10.12 (Unitary Group)
For F' = C, we define the unitary group of V' by

U(V)={ae L(V): aisan isometry}

Remark 61. If V is finite dimensional and {ey, ..., e,} an orthonormal basis:

e ' = R: O(v) is bijective with the set of orthogonal bases of V under
a—{aler),...,ale,)}.

o ' = C: U(v) is bijective with the set of orthogonal bases of V' under
a—{aler),...,ale,)}.

§10.11 Spectral theory for self-adjoint operators

Spectral theory is the study of the spectrum of operators. Recall that in finite-
dimensional inner product spaces V,W, o € L(V, W) yields the adjoint o* € L(W,V)
such that for all v € V,w € W, we have (a(v), w) = (v, a*(w)).

Linear maps become compact operators in infinite dimensions.

Lemma 10.6

Let V be a finite-dimensional inner product space. Let « € L(V') be a self-adjoint
endomorphism. Then

e « has real eigenvalues

e eigenvectors of a with respect to different eigenvalues are orthogonal.
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Proof. Suppose A € C, v € V nonzero such that a(v) = Av. Then, (\v,v) = A|v|?
and also

<Oé’l},1}> = (U,CkU> = <’U7)‘U> = XHUH2
Hence \ = X since v # 0.
Now, suppose 11 # A and w € V nonzero such that a(w) = pw. Then,
A v, w) = (aw,w) = (v, aw) = (v,w) = p (v, w)

So if A # ' we must have (v, w) = 0. O

Theorem 10.2 (Spectral Theorem for Self-Adjoint Maps)

Let V' be a finite-dimensional inner product space. Let & € L(V) be self-adjoint.
Then V has an orthonormal basis of eigenvectors of a. Hence « is diagonalisable in
an orthonormal basis.

Proof. F = R or C. We will consider induction on the dimension of V. True for
n=1

Suppose A = [a]|p with respect to any orthonormal basis B. By the fundamental
theorem of algebra, we know that y 4(¢) has a (complex) root, say A.

But since ) is an eigenvalue of a and « is self-adjoint, A € R.

Now, we choose an eigenvector v; = V' \ {0} such that a(v;) = Av;. We can set
|v1]| = 1 by linearity. Let U = (v;)* < V. We then observe that U is stable by
o; a(U) < U. Indeed, let u € U. Then (a(u),v1) = (u,a(v1)) = A(u,v1) = 0by
orthogonality. Hence a(u) € U.

We can then restrict o to the domain U where it is still self-adjoint, and by induction
we can then choose an orthonormal basis of eigenvectors for U as dim U = dim V' —

1
1. Since V' = (v1) @ U we have an orthonormal basis of eigenvectors for V' when

including v;. ]
Remark 62.
A0 0
0
A= : i
0

where A = [ |y]. This illustrates that ¢ |7 is stable.
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Corollary 10.4

Let V be a finite-dimensional inner product space. Let & € L(V) be self-adjoint.
Then V is the orthogonal direct sum of all the eigenspaces of a.

§10.12 Spectral theory for unitary maps

Lemma 10.7

Let V be a complex inner product space (Hermitian sesquilinear structure). Let «
be unitary, so o* = a1

e Then all eigenvalues of o have unit norm.

e Eigenvectors corresponding to different eigenvalues are orthogonal.

Proof. Let A € C, v € V' \ {0} such that a(v) = Av. First, A # 0 since « is invertible,
and in particular ker o = {0}. Since v = Aa~*(v), we can compute

A{v,v) = (A, v) = (aw,v) = <v,a_1v> = <v 1v> = A"1(v,v)

Hence (AX — 1)||v]|* = 0 giving |\| = 1.
Further, suppose 1 € Cand w € V' \ {0} such that a(w) = pw, X # p. Then

A (v, w) = (Av,w) = (av,w) = <v,a_1w> = <v, iw> = p L (v, w) = p (v, w)

since i = 1. As A # p then (v, w) = 0. O

Theorem 10.3 (Spectral Theorem for Unitary Maps)

Let V be a finite-dimensional complex inner product space. Let o € L(V') be unitary.
Then V has an orthonormal basis of eigenvectors of o. Hence « is diagonalisable in
an orthonormal basis.

Proof. Let A = [a]p where B is an orthonormal basis. Then x 4(¢) has a complex
root A.

As before, let v; # 0 such that a(v1) = Avy and ||v; || = 1.

Let U = (v1)*, and we claim that o(U) < U. Indeed, let u € U, and we find

(a(u),vy) = <u,a71(v1)> = <u, 1\1}1> = F(u,vﬁ
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Since (u,v;) = 0, we have a(u) € U. Hence, « restricted to U is a unitary endo-
morphism of U. By induction we have an orthonormal basis of eigenvectors of «
for U and hence for V. O

Remark 63. We used the fact that the field is complex to find an eigenvalue. In general, a
real-valued orthonormal matrix A giving AAT = I cannot be diagonalised over R. For

example, consider
cos@ —sind
A= (sin 0 cosf )

This is orthogonal and normalised. However, x 4(\) = 1 + 2\ cos 6 + A2 hence \ = e*%
which are complex in the general case.

§10.13 Application to bilinear forms

We wish to extend the previous statements about spectral theory into statements about
bilinear forms.

Corollary 10.5

Let A € M,(R) (or M,(C)) be a symmetric (or respectively Hermitian) matrix.
Then there exists an orthonormal (respectively unitary) matrix P such that PTAP
(or PTAP) is diagonal with real-valued entries.

Proof. Using the standard inner product over R", A € L(F") is self-adjoint and
hence there exists an orthonormal basis B of F" such that A is diagonal in this
basis. Let P = (v1, ..., v,) be the matrix of this basis. Since B is orthonormal, P is
orthogonal (or unitary). So PTP = I (PTP = I'). We know P~ AP is diagonal and
so PTAP is too. The eigenvalues are real as they are the eigenvalues of a symmetric
operator, hence the diagonal matrix is real. O

Corollary 10.6

Let V be a finite-dimensional real (or complex) inner productspace. Letp: V xV —
F be a symmetric (or Hermitian) bilinear form. Then, there exists an orthonormal
basis B of V such that [¢]p is diagonal.

Proof. Let B = {vy,...,v,} be any orthonormal basis of V. Let A = [¢]|.

¢ symmetric (respectively Hermitian) so AT = A (or respectively AT = A), hence
there exists an orthogonal (respectively unitary) matrix P such that PTAP (PTAP)
is diagonal. Let (v;) be the ith row of PT (or P'). Then (vy, . . .,v,) is an orthonormal
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basis B’ of V such that [¢]g = PTAP" is this diagonal matrix. O

"Using change of basis formula for bilinear forms

Remark 64. The diagonal entries of PTAP are the eigenvalues of A.

Moreover, we can define the signature s(y) to be the difference between the number of
positive eigenvalues of A and the number of negative eigenvalues of A.

§10.14 Simultaneous diagonalisation

Corollary 10.7 (Simultaneous Diagonalisation)

Let V be a finite-dimensional real (or complex) vector space. Let ¢, 1) be symmetric
(or Hermitian) bilinear forms on V. Let ¢ be positive definite. Then there exists a
basis (v1, . . . , v,) of V with respect to which ¢ and v are represented with a diagonal
matrix.

Proof. Since ¢ is positive definite, V' equipped with ¢ is a finite-dimensional inner
product space where (u, v) = ¢(u,v). Hence, there exists a basis of V' in which ¢ is
represented by a diagonal matrix, which is orthonormal with respect to the inner
product defined by ¢. Then, ¢ in this basis is represented by the identity matrix
given by p(vs,v;) = (vi,v;) = 055, which is diagonal.

So both bilinear forms are diagonal in B. O

Corollary 10.8 (Matrix Reformulation of Simultaneous Diagonalisation)

Let A, B € M,(R) (or C) which are symmetric (or Hermitian). Suppose for all
z # 0 we have zT Az > 0, so A is positive definite. Then there exists an invertible
matrix Q € M,(R) (or C) such that QTAQ (or QTAQ) and QTBQ (or Q'BQ) are
diagonal.

Proof. A induces a quadratic form Q(z) = 2T Az which is positive definite by as-
sumption. Similarly, Q(z) = = Bz is induced by B. Then we can apply the previous
corollary and change basis. O
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